Matches in SemOpenAlex for { <https://semopenalex.org/work/W4327587406> ?p ?o ?g. }
- W4327587406 abstract "Abstract Understanding how plants respond to environmental conditions such as temperature, CO 2 , humidity, and light radiation is essential for plant growth. This paper proposes an Artificial Neural Network (ANN) model to predict plant response to environmental conditions to enhance crop production systems that improve plant performance and resource use efficiency (e.g. light, fertiliser and water) in a Chinese Solar Greenhouse. Comprehensive data collection has been conducted in a greenhouse environment to validate the proposed prediction model. Specifically, the data has been collected from the CSG in warm and cold weather. This paper confirms that CSG’s passive insulation and heating system was effective in providing adequate protection during the winter. In particular, the CSG average indoor temperature was 18 $$^{circ }$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:msup> <mml:mrow /> <mml:mo>∘</mml:mo> </mml:msup> </mml:math> C higher than the outdoor temperature. The difference in environmental conditions led to a yield of 320.8g per head in the winter after 60 growing days compared to 258.9g in the spring experiment after just 35 days. Three different architectures of Bayesian Neural Networks (BNN) models have been evaluated to predict plant response to environmental conditions. The results show that the BNN network is accurate in modelling and predicting crop performance." @default.
- W4327587406 created "2023-03-17" @default.
- W4327587406 creator A5011236280 @default.
- W4327587406 creator A5028903275 @default.
- W4327587406 creator A5031156683 @default.
- W4327587406 creator A5041299226 @default.
- W4327587406 creator A5055972447 @default.
- W4327587406 creator A5056938623 @default.
- W4327587406 creator A5067964173 @default.
- W4327587406 date "2023-03-16" @default.
- W4327587406 modified "2023-10-01" @default.
- W4327587406 title "Modelling daily plant growth response to environmental conditions in Chinese solar greenhouse using Bayesian neural network" @default.
- W4327587406 cites W1969980386 @default.
- W4327587406 cites W1978865129 @default.
- W4327587406 cites W2015691973 @default.
- W4327587406 cites W2056657701 @default.
- W4327587406 cites W2069763975 @default.
- W4327587406 cites W2089790440 @default.
- W4327587406 cites W2099142658 @default.
- W4327587406 cites W2111051539 @default.
- W4327587406 cites W2128575417 @default.
- W4327587406 cites W2131451044 @default.
- W4327587406 cites W2164112679 @default.
- W4327587406 cites W2591559980 @default.
- W4327587406 cites W2890068488 @default.
- W4327587406 cites W2969021652 @default.
- W4327587406 cites W3021584615 @default.
- W4327587406 cites W3032482815 @default.
- W4327587406 cites W3035856362 @default.
- W4327587406 cites W3035989556 @default.
- W4327587406 cites W3043426275 @default.
- W4327587406 cites W3046097378 @default.
- W4327587406 cites W3109140284 @default.
- W4327587406 cites W3140264667 @default.
- W4327587406 cites W3160733272 @default.
- W4327587406 cites W3167428725 @default.
- W4327587406 cites W3174618907 @default.
- W4327587406 cites W3174658031 @default.
- W4327587406 cites W3187373940 @default.
- W4327587406 cites W3212637759 @default.
- W4327587406 cites W4327587406 @default.
- W4327587406 doi "https://doi.org/10.1038/s41598-023-30846-y" @default.
- W4327587406 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36928066" @default.
- W4327587406 hasPublicationYear "2023" @default.
- W4327587406 type Work @default.
- W4327587406 citedByCount "2" @default.
- W4327587406 countsByYear W43275874062023 @default.
- W4327587406 crossrefType "journal-article" @default.
- W4327587406 hasAuthorship W4327587406A5011236280 @default.
- W4327587406 hasAuthorship W4327587406A5028903275 @default.
- W4327587406 hasAuthorship W4327587406A5031156683 @default.
- W4327587406 hasAuthorship W4327587406A5041299226 @default.
- W4327587406 hasAuthorship W4327587406A5055972447 @default.
- W4327587406 hasAuthorship W4327587406A5056938623 @default.
- W4327587406 hasAuthorship W4327587406A5067964173 @default.
- W4327587406 hasBestOaLocation W43275874061 @default.
- W4327587406 hasConcept C119857082 @default.
- W4327587406 hasConcept C127313418 @default.
- W4327587406 hasConcept C127413603 @default.
- W4327587406 hasConcept C151420433 @default.
- W4327587406 hasConcept C153294291 @default.
- W4327587406 hasConcept C205649164 @default.
- W4327587406 hasConcept C32198211 @default.
- W4327587406 hasConcept C33724603 @default.
- W4327587406 hasConcept C39432304 @default.
- W4327587406 hasConcept C41008148 @default.
- W4327587406 hasConcept C50644808 @default.
- W4327587406 hasConcept C6557445 @default.
- W4327587406 hasConcept C86803240 @default.
- W4327587406 hasConcept C88463610 @default.
- W4327587406 hasConcept C91586092 @default.
- W4327587406 hasConceptScore W4327587406C119857082 @default.
- W4327587406 hasConceptScore W4327587406C127313418 @default.
- W4327587406 hasConceptScore W4327587406C127413603 @default.
- W4327587406 hasConceptScore W4327587406C151420433 @default.
- W4327587406 hasConceptScore W4327587406C153294291 @default.
- W4327587406 hasConceptScore W4327587406C205649164 @default.
- W4327587406 hasConceptScore W4327587406C32198211 @default.
- W4327587406 hasConceptScore W4327587406C33724603 @default.
- W4327587406 hasConceptScore W4327587406C39432304 @default.
- W4327587406 hasConceptScore W4327587406C41008148 @default.
- W4327587406 hasConceptScore W4327587406C50644808 @default.
- W4327587406 hasConceptScore W4327587406C6557445 @default.
- W4327587406 hasConceptScore W4327587406C86803240 @default.
- W4327587406 hasConceptScore W4327587406C88463610 @default.
- W4327587406 hasConceptScore W4327587406C91586092 @default.
- W4327587406 hasFunder F4320335777 @default.
- W4327587406 hasIssue "1" @default.
- W4327587406 hasLocation W43275874061 @default.
- W4327587406 hasLocation W43275874062 @default.
- W4327587406 hasLocation W43275874063 @default.
- W4327587406 hasOpenAccess W4327587406 @default.
- W4327587406 hasPrimaryLocation W43275874061 @default.
- W4327587406 hasRelatedWork W2001742761 @default.
- W4327587406 hasRelatedWork W2147552018 @default.
- W4327587406 hasRelatedWork W2530570003 @default.
- W4327587406 hasRelatedWork W2590877291 @default.
- W4327587406 hasRelatedWork W2966753266 @default.
- W4327587406 hasRelatedWork W3162875150 @default.
- W4327587406 hasRelatedWork W4319151748 @default.