Matches in SemOpenAlex for { <https://semopenalex.org/work/W4327596287> ?p ?o ?g. }
- W4327596287 endingPage "114198" @default.
- W4327596287 startingPage "114198" @default.
- W4327596287 abstract "To guarantee vessel traffic safety in inland waterways, the automatic identification system (AIS) and shore-based cameras have been widely adopted to monitor moving vessels. The AIS data could provide the unique maritime mobile service identity (MMSI), position coordinates (i.e., latitude and longitude), course over ground, and speed over ground for the vessels of interest. In contrast, the cameras could directly display the visual appearance of vessels but fail to accurately grasp the vessels’ identity information and motion parameters. In this paper, we propose to improve the maritime traffic surveillance in inland waterways using the robust fusion of AIS and visual data. It is able to obtain more accurate vessel tracking results and kinematic characteristics. In particular, to robustly track the visual vessels under complex scenarios, we first propose an anti-occlusion vessel tracking method based on the simple online and real-time tracking with a deep association metric (DeepSORT) method. We then preprocess and predict the vessel positions to obtain synchronous AIS and visual data. Before the implementation of AIS and visual data fusion, the AIS position coordinates in the geodetic coordinate system will be projected into the image coordinate system via the coordinate transformation. A multi-feature similarity measurement-based Hungarian algorithm is finally proposed to robustly and accurately fuse the AIS and visual data in the image coordinate system. For the sake of repeating fusion experiments, we have also presented a new multi-sensor dataset containing AIS data and shore-based camera imagery. The quantitative and qualitative experiments show that our fusion method is capable of improving the maritime traffic surveillance in inland waterways. It can overcome the vessel occlusion problem and fully utilizes the advantages of multi-source data to promote the maritime surveillance, resulting in enhanced vessel traffic safety and efficiency. In this work, the presented multi-sensor dataset and source code are available at https://github.com/QuJX/AIS-Visual-Fusion." @default.
- W4327596287 created "2023-03-17" @default.
- W4327596287 creator A5015241563 @default.
- W4327596287 creator A5027901096 @default.
- W4327596287 creator A5037365971 @default.
- W4327596287 creator A5047377246 @default.
- W4327596287 creator A5061907283 @default.
- W4327596287 creator A5075807684 @default.
- W4327596287 date "2023-05-01" @default.
- W4327596287 modified "2023-10-05" @default.
- W4327596287 title "Improving maritime traffic surveillance in inland waterways using the robust fusion of AIS and visual data" @default.
- W4327596287 cites W1536680647 @default.
- W4327596287 cites W2002526480 @default.
- W4327596287 cites W2018078023 @default.
- W4327596287 cites W2022603014 @default.
- W4327596287 cites W2042149502 @default.
- W4327596287 cites W2091249078 @default.
- W4327596287 cites W2099875627 @default.
- W4327596287 cites W2100138625 @default.
- W4327596287 cites W2102605133 @default.
- W4327596287 cites W2119539043 @default.
- W4327596287 cites W2157254703 @default.
- W4327596287 cites W2168356304 @default.
- W4327596287 cites W2396602822 @default.
- W4327596287 cites W2565639579 @default.
- W4327596287 cites W2570343428 @default.
- W4327596287 cites W2743556323 @default.
- W4327596287 cites W2774732543 @default.
- W4327596287 cites W2800773882 @default.
- W4327596287 cites W2883473663 @default.
- W4327596287 cites W2885291434 @default.
- W4327596287 cites W2897477155 @default.
- W4327596287 cites W2936787846 @default.
- W4327596287 cites W3010377716 @default.
- W4327596287 cites W3091914433 @default.
- W4327596287 cites W3095955264 @default.
- W4327596287 cites W3097096317 @default.
- W4327596287 cites W3131936216 @default.
- W4327596287 cites W3149150147 @default.
- W4327596287 cites W3156460835 @default.
- W4327596287 cites W3173304673 @default.
- W4327596287 cites W3181175604 @default.
- W4327596287 cites W3190647944 @default.
- W4327596287 cites W3214396588 @default.
- W4327596287 cites W4205257296 @default.
- W4327596287 cites W4220668440 @default.
- W4327596287 cites W4220685260 @default.
- W4327596287 cites W4224301407 @default.
- W4327596287 cites W4285891035 @default.
- W4327596287 cites W4296125434 @default.
- W4327596287 cites W4302293056 @default.
- W4327596287 cites W4307248170 @default.
- W4327596287 cites W4309631282 @default.
- W4327596287 cites W4312872625 @default.
- W4327596287 cites W4313117614 @default.
- W4327596287 doi "https://doi.org/10.1016/j.oceaneng.2023.114198" @default.
- W4327596287 hasPublicationYear "2023" @default.
- W4327596287 type Work @default.
- W4327596287 citedByCount "2" @default.
- W4327596287 countsByYear W43275962872023 @default.
- W4327596287 crossrefType "journal-article" @default.
- W4327596287 hasAuthorship W4327596287A5015241563 @default.
- W4327596287 hasAuthorship W4327596287A5027901096 @default.
- W4327596287 hasAuthorship W4327596287A5037365971 @default.
- W4327596287 hasAuthorship W4327596287A5047377246 @default.
- W4327596287 hasAuthorship W4327596287A5061907283 @default.
- W4327596287 hasAuthorship W4327596287A5075807684 @default.
- W4327596287 hasConcept C10138342 @default.
- W4327596287 hasConcept C146997752 @default.
- W4327596287 hasConcept C154945302 @default.
- W4327596287 hasConcept C162324750 @default.
- W4327596287 hasConcept C198082294 @default.
- W4327596287 hasConcept C31972630 @default.
- W4327596287 hasConcept C33954974 @default.
- W4327596287 hasConcept C41008148 @default.
- W4327596287 hasConcept C79403827 @default.
- W4327596287 hasConcept C80551277 @default.
- W4327596287 hasConceptScore W4327596287C10138342 @default.
- W4327596287 hasConceptScore W4327596287C146997752 @default.
- W4327596287 hasConceptScore W4327596287C154945302 @default.
- W4327596287 hasConceptScore W4327596287C162324750 @default.
- W4327596287 hasConceptScore W4327596287C198082294 @default.
- W4327596287 hasConceptScore W4327596287C31972630 @default.
- W4327596287 hasConceptScore W4327596287C33954974 @default.
- W4327596287 hasConceptScore W4327596287C41008148 @default.
- W4327596287 hasConceptScore W4327596287C79403827 @default.
- W4327596287 hasConceptScore W4327596287C80551277 @default.
- W4327596287 hasFunder F4320321001 @default.
- W4327596287 hasFunder F4320335777 @default.
- W4327596287 hasLocation W43275962871 @default.
- W4327596287 hasOpenAccess W4327596287 @default.
- W4327596287 hasPrimaryLocation W43275962871 @default.
- W4327596287 hasRelatedWork W1581382664 @default.
- W4327596287 hasRelatedWork W1865242774 @default.
- W4327596287 hasRelatedWork W1990586323 @default.
- W4327596287 hasRelatedWork W2149242919 @default.
- W4327596287 hasRelatedWork W2360764675 @default.
- W4327596287 hasRelatedWork W2379318710 @default.