Matches in SemOpenAlex for { <https://semopenalex.org/work/W4327596710> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W4327596710 endingPage "9" @default.
- W4327596710 startingPage "1" @default.
- W4327596710 abstract "Estimating position and stereographic geometry information of noncooperative spacecraft through three-dimensional (3-D) reconstruction techniques is of great significance. Depth information acquisition is an important component of 3-D reconstruction. Monocular cameras are cheaper and more widely used than depth sensors. The relative positions of noncooperative spacecraft and our spacecraft can be calculated from depth maps of monocular depth estimation and the camera parameters, providing data support for subsequent tracking and capture missions. This paper proposes a monocular depth estimation network combining the convolutional neural network (CNN) and a vision transformer (VIT) to improve the prediction accuracy of few-shot samples. We extract detail features and global features from the CNN and VIT encoders, respectively, and then fuse deep features and shallow features by a skip-connected upsampling decoder. Compared with the representative depth estimation algorithms in recent years on the NYU-Depth V2 dataset, the proposed network structure combines the advantages of the CNN and VIT as well as estimates the global depth of the scene more accurately while maintaining details. To solve the lack of spacecraft data collection, a new dataset is made from 3-D simulation models. Experiments on the self-made dataset demonstrate the feasibility of this method in aerospace engineering." @default.
- W4327596710 created "2023-03-17" @default.
- W4327596710 creator A5006647529 @default.
- W4327596710 creator A5022802322 @default.
- W4327596710 creator A5055671661 @default.
- W4327596710 date "2023-03-16" @default.
- W4327596710 modified "2023-09-24" @default.
- W4327596710 title "Monocular Depth Estimation of Noncooperative Spacecraft Based on Deep Learning" @default.
- W4327596710 cites W2133665775 @default.
- W4327596710 cites W2609883120 @default.
- W4327596710 cites W2618530766 @default.
- W4327596710 cites W2656918239 @default.
- W4327596710 cites W2762755611 @default.
- W4327596710 cites W2895553390 @default.
- W4327596710 cites W3028589418 @default.
- W4327596710 cites W3118453581 @default.
- W4327596710 cites W4206033838 @default.
- W4327596710 doi "https://doi.org/10.2514/1.i011166" @default.
- W4327596710 hasPublicationYear "2023" @default.
- W4327596710 type Work @default.
- W4327596710 citedByCount "0" @default.
- W4327596710 crossrefType "journal-article" @default.
- W4327596710 hasAuthorship W4327596710A5006647529 @default.
- W4327596710 hasAuthorship W4327596710A5022802322 @default.
- W4327596710 hasAuthorship W4327596710A5055671661 @default.
- W4327596710 hasConcept C108583219 @default.
- W4327596710 hasConcept C115961682 @default.
- W4327596710 hasConcept C119001982 @default.
- W4327596710 hasConcept C127413603 @default.
- W4327596710 hasConcept C141268832 @default.
- W4327596710 hasConcept C146978453 @default.
- W4327596710 hasConcept C154945302 @default.
- W4327596710 hasConcept C2524010 @default.
- W4327596710 hasConcept C29829512 @default.
- W4327596710 hasConcept C31972630 @default.
- W4327596710 hasConcept C33923547 @default.
- W4327596710 hasConcept C41008148 @default.
- W4327596710 hasConcept C65909025 @default.
- W4327596710 hasConcept C81363708 @default.
- W4327596710 hasConceptScore W4327596710C108583219 @default.
- W4327596710 hasConceptScore W4327596710C115961682 @default.
- W4327596710 hasConceptScore W4327596710C119001982 @default.
- W4327596710 hasConceptScore W4327596710C127413603 @default.
- W4327596710 hasConceptScore W4327596710C141268832 @default.
- W4327596710 hasConceptScore W4327596710C146978453 @default.
- W4327596710 hasConceptScore W4327596710C154945302 @default.
- W4327596710 hasConceptScore W4327596710C2524010 @default.
- W4327596710 hasConceptScore W4327596710C29829512 @default.
- W4327596710 hasConceptScore W4327596710C31972630 @default.
- W4327596710 hasConceptScore W4327596710C33923547 @default.
- W4327596710 hasConceptScore W4327596710C41008148 @default.
- W4327596710 hasConceptScore W4327596710C65909025 @default.
- W4327596710 hasConceptScore W4327596710C81363708 @default.
- W4327596710 hasFunder F4320321001 @default.
- W4327596710 hasLocation W43275967101 @default.
- W4327596710 hasOpenAccess W4327596710 @default.
- W4327596710 hasPrimaryLocation W43275967101 @default.
- W4327596710 hasRelatedWork W1588787733 @default.
- W4327596710 hasRelatedWork W1803059841 @default.
- W4327596710 hasRelatedWork W2040503211 @default.
- W4327596710 hasRelatedWork W2204549569 @default.
- W4327596710 hasRelatedWork W3014239205 @default.
- W4327596710 hasRelatedWork W3091976719 @default.
- W4327596710 hasRelatedWork W3192645019 @default.
- W4327596710 hasRelatedWork W3201632203 @default.
- W4327596710 hasRelatedWork W4310825147 @default.
- W4327596710 hasRelatedWork W4312637486 @default.
- W4327596710 isParatext "false" @default.
- W4327596710 isRetracted "false" @default.
- W4327596710 workType "article" @default.