Matches in SemOpenAlex for { <https://semopenalex.org/work/W4327600511> ?p ?o ?g. }
- W4327600511 endingPage "125" @default.
- W4327600511 startingPage "125" @default.
- W4327600511 abstract "Fault-tolerant control of a three-phase inverter can be achieved by performing a hardware reconfiguration of the six-switch and three-phase (6S3P) topology to the four-switch and three-phase (4S3P) topology after detection and localisation of the faulty phase. Together with hardware reconfiguration, the SVPWM algorithm must be appropriately modified to handle the new 4S3P topology. The presented study focuses on diagnosing three-phase faults in two steps: fault detection and localisation. Fault detection is needed to recognise the healthy or unhealthy state of the inverter. The binary state recognition problem can be solved by preparing a feature vector that is calculated from phase currents (ia, ib, and ic) in the time and frequency domains. After the fault diagnosis system recognises the unhealthy state, it investigates the signals to localise which phase of the inverter is faulty. The multiclass classification was solved by a transformation of the three-phase currents into a single RGB image and by training a convolutional neural network. The proposed methodology for the diagnosis of three-phase inverters was tested based on a simulation model representing a laboratory test bench. After the learning process, fault detection was possible based on a 128-sample window (corresponding to a time of 0.64 ms) with an accuracy of 99 percent. In the next step, the localisation of selected individual faults was performed on the basis of a 256-sample window (corresponding to a time of 1.28 ms) with an accuracy of 100 percent." @default.
- W4327600511 created "2023-03-17" @default.
- W4327600511 creator A5009784703 @default.
- W4327600511 creator A5053860416 @default.
- W4327600511 creator A5064083983 @default.
- W4327600511 date "2023-03-15" @default.
- W4327600511 modified "2023-10-18" @default.
- W4327600511 title "Fault Detection and Localisation of a Three-Phase Inverter with Permanent Magnet Synchronous Motor Load Using a Convolutional Neural Network" @default.
- W4327600511 cites W1486629005 @default.
- W4327600511 cites W1646838140 @default.
- W4327600511 cites W2034752292 @default.
- W4327600511 cites W2060324200 @default.
- W4327600511 cites W2060676399 @default.
- W4327600511 cites W2142351866 @default.
- W4327600511 cites W2167320299 @default.
- W4327600511 cites W2168291854 @default.
- W4327600511 cites W2243758511 @default.
- W4327600511 cites W2482409050 @default.
- W4327600511 cites W2534666116 @default.
- W4327600511 cites W2550238346 @default.
- W4327600511 cites W2740294444 @default.
- W4327600511 cites W2762181332 @default.
- W4327600511 cites W2789280730 @default.
- W4327600511 cites W2792175060 @default.
- W4327600511 cites W2810057162 @default.
- W4327600511 cites W2889389601 @default.
- W4327600511 cites W2891044424 @default.
- W4327600511 cites W2911595607 @default.
- W4327600511 cites W2961073176 @default.
- W4327600511 cites W2962769582 @default.
- W4327600511 cites W2964239088 @default.
- W4327600511 cites W2980686936 @default.
- W4327600511 cites W2992740629 @default.
- W4327600511 cites W2994765626 @default.
- W4327600511 cites W3009108720 @default.
- W4327600511 cites W3011744257 @default.
- W4327600511 cites W3016275309 @default.
- W4327600511 cites W3022708807 @default.
- W4327600511 cites W3024315398 @default.
- W4327600511 cites W3041188842 @default.
- W4327600511 cites W3043650873 @default.
- W4327600511 cites W3044003250 @default.
- W4327600511 cites W3049564938 @default.
- W4327600511 cites W3088127723 @default.
- W4327600511 cites W3089296104 @default.
- W4327600511 cites W3090238656 @default.
- W4327600511 cites W3090887241 @default.
- W4327600511 cites W3092068739 @default.
- W4327600511 cites W3095952231 @default.
- W4327600511 cites W3098650625 @default.
- W4327600511 cites W3112873697 @default.
- W4327600511 cites W3113008830 @default.
- W4327600511 cites W3115434540 @default.
- W4327600511 cites W3118313511 @default.
- W4327600511 cites W3119624659 @default.
- W4327600511 cites W3122042419 @default.
- W4327600511 cites W3129764251 @default.
- W4327600511 cites W3130900996 @default.
- W4327600511 cites W3133242150 @default.
- W4327600511 cites W3135733061 @default.
- W4327600511 cites W3137369810 @default.
- W4327600511 cites W3144246019 @default.
- W4327600511 cites W3159913937 @default.
- W4327600511 cites W3164266284 @default.
- W4327600511 cites W3175561862 @default.
- W4327600511 cites W3182155920 @default.
- W4327600511 cites W3192807145 @default.
- W4327600511 cites W3196507485 @default.
- W4327600511 cites W3200251831 @default.
- W4327600511 cites W3201115733 @default.
- W4327600511 cites W3208702349 @default.
- W4327600511 cites W3210221507 @default.
- W4327600511 cites W3213383874 @default.
- W4327600511 cites W3213866489 @default.
- W4327600511 cites W4200133655 @default.
- W4327600511 cites W4200426110 @default.
- W4327600511 cites W4200432631 @default.
- W4327600511 cites W4206506338 @default.
- W4327600511 cites W4210737561 @default.
- W4327600511 cites W4211037834 @default.
- W4327600511 cites W4212849476 @default.
- W4327600511 cites W4220829242 @default.
- W4327600511 cites W4225919356 @default.
- W4327600511 cites W4225926312 @default.
- W4327600511 cites W4283009378 @default.
- W4327600511 cites W4283026721 @default.
- W4327600511 cites W4283122154 @default.
- W4327600511 cites W4285300690 @default.
- W4327600511 cites W4285606256 @default.
- W4327600511 cites W4289995391 @default.
- W4327600511 cites W4295809102 @default.
- W4327600511 cites W4318830872 @default.
- W4327600511 doi "https://doi.org/10.3390/act12030125" @default.
- W4327600511 hasPublicationYear "2023" @default.
- W4327600511 type Work @default.
- W4327600511 citedByCount "3" @default.
- W4327600511 countsByYear W43276005112023 @default.
- W4327600511 crossrefType "journal-article" @default.