Matches in SemOpenAlex for { <https://semopenalex.org/work/W4327641272> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4327641272 abstract "Recent development of Industrial Internet produces a large number of sensor data that record the production status of equipment in the field of industrial intelligence. This paper focuses on how to detect abnormal event from multivariate time series data. We propose an anomaly detection model DWGAT, that first uses DeepWalk method to generate an embedding vector for each sensor node that can represent sensor's behavior characteristics according to prior information, and then establishes a graph describing the initial relationships between sensor nodes. The graph attention network is used to mine and aggregate the data features to predict the multivariate data at the next moment. Finally, the predicted value is compared with the actual observed value, and a calculation method of anomaly score is designed to judge whether there are anomalies in the system according to whether the anomaly score is larger than the threshold value learned by the model. Experiments are established on two real-world public industrial datasets and compared with two baseline models. The results show that the F1 scores of the proposed anomaly detection model on the two data sets are higher than those of the current optimal model." @default.
- W4327641272 created "2023-03-18" @default.
- W4327641272 creator A5006014871 @default.
- W4327641272 date "2022-12-01" @default.
- W4327641272 modified "2023-10-17" @default.
- W4327641272 title "Anomaly detection of multivariate industrial sensing data based on graph attention network" @default.
- W4327641272 cites W2012079387 @default.
- W4327641272 cites W2017300542 @default.
- W4327641272 cites W2117368434 @default.
- W4327641272 cites W2407991977 @default.
- W4327641272 cites W2408316103 @default.
- W4327641272 cites W2604247107 @default.
- W4327641272 cites W2780454225 @default.
- W4327641272 cites W2786146747 @default.
- W4327641272 cites W2897257904 @default.
- W4327641272 cites W2901054882 @default.
- W4327641272 cites W2903936867 @default.
- W4327641272 cites W2909877301 @default.
- W4327641272 cites W2911200746 @default.
- W4327641272 cites W2914316438 @default.
- W4327641272 cites W2949468773 @default.
- W4327641272 cites W2974780582 @default.
- W4327641272 cites W2980268095 @default.
- W4327641272 cites W3013803552 @default.
- W4327641272 cites W3080253043 @default.
- W4327641272 cites W3128634608 @default.
- W4327641272 cites W3166888304 @default.
- W4327641272 cites W3169450514 @default.
- W4327641272 cites W3170937175 @default.
- W4327641272 cites W3198316914 @default.
- W4327641272 doi "https://doi.org/10.1109/isci57775.2022.00012" @default.
- W4327641272 hasPublicationYear "2022" @default.
- W4327641272 type Work @default.
- W4327641272 citedByCount "0" @default.
- W4327641272 crossrefType "proceedings-article" @default.
- W4327641272 hasAuthorship W4327641272A5006014871 @default.
- W4327641272 hasConcept C119857082 @default.
- W4327641272 hasConcept C121332964 @default.
- W4327641272 hasConcept C124101348 @default.
- W4327641272 hasConcept C12997251 @default.
- W4327641272 hasConcept C132525143 @default.
- W4327641272 hasConcept C151406439 @default.
- W4327641272 hasConcept C154945302 @default.
- W4327641272 hasConcept C161584116 @default.
- W4327641272 hasConcept C24590314 @default.
- W4327641272 hasConcept C26873012 @default.
- W4327641272 hasConcept C31258907 @default.
- W4327641272 hasConcept C41008148 @default.
- W4327641272 hasConcept C67186912 @default.
- W4327641272 hasConcept C739882 @default.
- W4327641272 hasConcept C77088390 @default.
- W4327641272 hasConcept C80444323 @default.
- W4327641272 hasConceptScore W4327641272C119857082 @default.
- W4327641272 hasConceptScore W4327641272C121332964 @default.
- W4327641272 hasConceptScore W4327641272C124101348 @default.
- W4327641272 hasConceptScore W4327641272C12997251 @default.
- W4327641272 hasConceptScore W4327641272C132525143 @default.
- W4327641272 hasConceptScore W4327641272C151406439 @default.
- W4327641272 hasConceptScore W4327641272C154945302 @default.
- W4327641272 hasConceptScore W4327641272C161584116 @default.
- W4327641272 hasConceptScore W4327641272C24590314 @default.
- W4327641272 hasConceptScore W4327641272C26873012 @default.
- W4327641272 hasConceptScore W4327641272C31258907 @default.
- W4327641272 hasConceptScore W4327641272C41008148 @default.
- W4327641272 hasConceptScore W4327641272C67186912 @default.
- W4327641272 hasConceptScore W4327641272C739882 @default.
- W4327641272 hasConceptScore W4327641272C77088390 @default.
- W4327641272 hasConceptScore W4327641272C80444323 @default.
- W4327641272 hasLocation W43276412721 @default.
- W4327641272 hasOpenAccess W4327641272 @default.
- W4327641272 hasPrimaryLocation W43276412721 @default.
- W4327641272 hasRelatedWork W2063729131 @default.
- W4327641272 hasRelatedWork W2887444169 @default.
- W4327641272 hasRelatedWork W2950361482 @default.
- W4327641272 hasRelatedWork W3126064435 @default.
- W4327641272 hasRelatedWork W4226306543 @default.
- W4327641272 hasRelatedWork W4226505467 @default.
- W4327641272 hasRelatedWork W4308724723 @default.
- W4327641272 hasRelatedWork W4312689719 @default.
- W4327641272 hasRelatedWork W4315881652 @default.
- W4327641272 hasRelatedWork W4375928394 @default.
- W4327641272 isParatext "false" @default.
- W4327641272 isRetracted "false" @default.
- W4327641272 workType "article" @default.