Matches in SemOpenAlex for { <https://semopenalex.org/work/W4327642293> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4327642293 abstract "Generating high-resolution binaural room impulse responses (BRIRs) for a given position requires significant computational resources, making it impractical for acoustic virtual reality in real-time environments. The main problem is the large number of coefficients required to simulate high-quality BRIRs, even in low-reverberant environments. In this sense, an approach that reconstructs a BRIR with fewer computational resources has been a challenge until nowadays. Therefore, this work introduces an approach for generating BRIRs from a compressed BRIR representation using a variational autoencoder (VAE). The approach consists of 1) simulating a certain number of BRIRs using an acoustic simulator software for a given virtual environment; 2) generating a dataset with enough BRIRs distributed uniformly over the given scenario using a data augmentation process; 3) applying a clusterization technique to homogenize the BRIR dataset previous training process; 4) training a VAE to obtain dimensionally reduced BRIRs from the encoder; 5) finally, generating a BRIR from the compressed representation using the decoder of the VAE. Only a segment of the BRIR was used to train and evaluate this approach. The MSE between the BRIRs simulated and the BRIRs generated by the model were compared to test the results, presenting a lower MSE." @default.
- W4327642293 created "2023-03-18" @default.
- W4327642293 creator A5008985735 @default.
- W4327642293 creator A5009419308 @default.
- W4327642293 creator A5012362359 @default.
- W4327642293 creator A5013600949 @default.
- W4327642293 creator A5055067521 @default.
- W4327642293 date "2022-11-01" @default.
- W4327642293 modified "2023-09-24" @default.
- W4327642293 title "A Deep Learning approach for the Generation of Room Impulse Responses" @default.
- W4327642293 cites W1969108960 @default.
- W4327642293 cites W2761230746 @default.
- W4327642293 cites W2942535661 @default.
- W4327642293 cites W2950900440 @default.
- W4327642293 cites W2968815405 @default.
- W4327642293 cites W3101380508 @default.
- W4327642293 cites W3103001801 @default.
- W4327642293 cites W3105475478 @default.
- W4327642293 cites W3200665608 @default.
- W4327642293 cites W4206566734 @default.
- W4327642293 cites W4238626858 @default.
- W4327642293 doi "https://doi.org/10.1109/ici2st57350.2022.00017" @default.
- W4327642293 hasPublicationYear "2022" @default.
- W4327642293 type Work @default.
- W4327642293 citedByCount "0" @default.
- W4327642293 crossrefType "proceedings-article" @default.
- W4327642293 hasAuthorship W4327642293A5008985735 @default.
- W4327642293 hasAuthorship W4327642293A5009419308 @default.
- W4327642293 hasAuthorship W4327642293A5012362359 @default.
- W4327642293 hasAuthorship W4327642293A5013600949 @default.
- W4327642293 hasAuthorship W4327642293A5055067521 @default.
- W4327642293 hasConcept C101738243 @default.
- W4327642293 hasConcept C108583219 @default.
- W4327642293 hasConcept C111919701 @default.
- W4327642293 hasConcept C11413529 @default.
- W4327642293 hasConcept C118505674 @default.
- W4327642293 hasConcept C121332964 @default.
- W4327642293 hasConcept C154945302 @default.
- W4327642293 hasConcept C17744445 @default.
- W4327642293 hasConcept C194969405 @default.
- W4327642293 hasConcept C199360897 @default.
- W4327642293 hasConcept C199539241 @default.
- W4327642293 hasConcept C201247586 @default.
- W4327642293 hasConcept C2776359362 @default.
- W4327642293 hasConcept C2777904410 @default.
- W4327642293 hasConcept C28490314 @default.
- W4327642293 hasConcept C41008148 @default.
- W4327642293 hasConcept C62520636 @default.
- W4327642293 hasConcept C70836080 @default.
- W4327642293 hasConcept C94625758 @default.
- W4327642293 hasConcept C98045186 @default.
- W4327642293 hasConceptScore W4327642293C101738243 @default.
- W4327642293 hasConceptScore W4327642293C108583219 @default.
- W4327642293 hasConceptScore W4327642293C111919701 @default.
- W4327642293 hasConceptScore W4327642293C11413529 @default.
- W4327642293 hasConceptScore W4327642293C118505674 @default.
- W4327642293 hasConceptScore W4327642293C121332964 @default.
- W4327642293 hasConceptScore W4327642293C154945302 @default.
- W4327642293 hasConceptScore W4327642293C17744445 @default.
- W4327642293 hasConceptScore W4327642293C194969405 @default.
- W4327642293 hasConceptScore W4327642293C199360897 @default.
- W4327642293 hasConceptScore W4327642293C199539241 @default.
- W4327642293 hasConceptScore W4327642293C201247586 @default.
- W4327642293 hasConceptScore W4327642293C2776359362 @default.
- W4327642293 hasConceptScore W4327642293C2777904410 @default.
- W4327642293 hasConceptScore W4327642293C28490314 @default.
- W4327642293 hasConceptScore W4327642293C41008148 @default.
- W4327642293 hasConceptScore W4327642293C62520636 @default.
- W4327642293 hasConceptScore W4327642293C70836080 @default.
- W4327642293 hasConceptScore W4327642293C94625758 @default.
- W4327642293 hasConceptScore W4327642293C98045186 @default.
- W4327642293 hasLocation W43276422931 @default.
- W4327642293 hasOpenAccess W4327642293 @default.
- W4327642293 hasPrimaryLocation W43276422931 @default.
- W4327642293 hasRelatedWork W2194435393 @default.
- W4327642293 hasRelatedWork W2589098947 @default.
- W4327642293 hasRelatedWork W2937381246 @default.
- W4327642293 hasRelatedWork W3040474235 @default.
- W4327642293 hasRelatedWork W3085258535 @default.
- W4327642293 hasRelatedWork W3136048210 @default.
- W4327642293 hasRelatedWork W3137185187 @default.
- W4327642293 hasRelatedWork W4281782802 @default.
- W4327642293 hasRelatedWork W4298000443 @default.
- W4327642293 hasRelatedWork W4307076905 @default.
- W4327642293 isParatext "false" @default.
- W4327642293 isRetracted "false" @default.
- W4327642293 workType "article" @default.