Matches in SemOpenAlex for { <https://semopenalex.org/work/W4327644080> ?p ?o ?g. }
- W4327644080 endingPage "458" @default.
- W4327644080 startingPage "441" @default.
- W4327644080 abstract "It is important to learn whether text information remains valid or not for various applications including story comprehension, information retrieval, and user state tracking on microblogs and via chatbot conversations. It is also beneficial to deeply understand the story. However, this kind of inference is still difficult for computers as it requires temporal commonsense. We propose a novel task, Temporal Natural Language Inference, inspired by traditional natural language reasoning to determine the temporal validity of text content. The task requires inference and judgment whether an action expressed in a sentence is still ongoing or rather completed, hence, whether the sentence still remains valid, given its supplementary content. We first construct our own dataset for this task and train several machine learning models. Then we propose an effective method for learning information from an external knowledge base that gives hints on temporal commonsense knowledge. Using prepared dataset, we introduce a new machine learning model that incorporates the information from the knowledge base and demonstrate that our model outperforms state-of-the-art approaches in the proposed task." @default.
- W4327644080 created "2023-03-18" @default.
- W4327644080 creator A5018169173 @default.
- W4327644080 creator A5075581979 @default.
- W4327644080 creator A5079733597 @default.
- W4327644080 date "2023-01-01" @default.
- W4327644080 modified "2023-10-16" @default.
- W4327644080 title "Temporal Natural Language Inference: Evidence-Based Evaluation of Temporal Text Validity" @default.
- W4327644080 cites W1504636771 @default.
- W4327644080 cites W1840435438 @default.
- W4327644080 cites W1897507002 @default.
- W4327644080 cites W2016089260 @default.
- W4327644080 cites W2057822527 @default.
- W4327644080 cites W2080133951 @default.
- W4327644080 cites W2118689949 @default.
- W4327644080 cites W2130158090 @default.
- W4327644080 cites W2141539902 @default.
- W4327644080 cites W2145959026 @default.
- W4327644080 cites W2185175083 @default.
- W4327644080 cites W2250539671 @default.
- W4327644080 cites W2283196293 @default.
- W4327644080 cites W2466175319 @default.
- W4327644080 cites W2561529111 @default.
- W4327644080 cites W2608787653 @default.
- W4327644080 cites W2739896562 @default.
- W4327644080 cites W2788496822 @default.
- W4327644080 cites W2797605755 @default.
- W4327644080 cites W2798370388 @default.
- W4327644080 cites W2798665661 @default.
- W4327644080 cites W2868921360 @default.
- W4327644080 cites W2898852996 @default.
- W4327644080 cites W2902075181 @default.
- W4327644080 cites W2923014074 @default.
- W4327644080 cites W2931560958 @default.
- W4327644080 cites W2950339735 @default.
- W4327644080 cites W2953356739 @default.
- W4327644080 cites W2962781380 @default.
- W4327644080 cites W2963101081 @default.
- W4327644080 cites W2963797084 @default.
- W4327644080 cites W2963829073 @default.
- W4327644080 cites W2963846996 @default.
- W4327644080 cites W2963895422 @default.
- W4327644080 cites W2963918774 @default.
- W4327644080 cites W2964263366 @default.
- W4327644080 cites W2970641574 @default.
- W4327644080 cites W2970986510 @default.
- W4327644080 cites W2971236147 @default.
- W4327644080 cites W2983995706 @default.
- W4327644080 cites W2984008963 @default.
- W4327644080 cites W2991358176 @default.
- W4327644080 cites W2998231212 @default.
- W4327644080 cites W3034602344 @default.
- W4327644080 cites W3035290244 @default.
- W4327644080 cites W3080427797 @default.
- W4327644080 cites W3104036557 @default.
- W4327644080 cites W3172335055 @default.
- W4327644080 cites W3174464510 @default.
- W4327644080 cites W3211116231 @default.
- W4327644080 cites W4239647775 @default.
- W4327644080 cites W4300573994 @default.
- W4327644080 doi "https://doi.org/10.1007/978-3-031-28244-7_28" @default.
- W4327644080 hasPublicationYear "2023" @default.
- W4327644080 type Work @default.
- W4327644080 citedByCount "0" @default.
- W4327644080 crossrefType "book-chapter" @default.
- W4327644080 hasAuthorship W4327644080A5018169173 @default.
- W4327644080 hasAuthorship W4327644080A5075581979 @default.
- W4327644080 hasAuthorship W4327644080A5079733597 @default.
- W4327644080 hasConcept C154945302 @default.
- W4327644080 hasConcept C162324750 @default.
- W4327644080 hasConcept C187736073 @default.
- W4327644080 hasConcept C195324797 @default.
- W4327644080 hasConcept C199360897 @default.
- W4327644080 hasConcept C204321447 @default.
- W4327644080 hasConcept C2776214188 @default.
- W4327644080 hasConcept C2777530160 @default.
- W4327644080 hasConcept C2779439875 @default.
- W4327644080 hasConcept C2780451532 @default.
- W4327644080 hasConcept C41008148 @default.
- W4327644080 hasConcept C44291984 @default.
- W4327644080 hasConcept C4554734 @default.
- W4327644080 hasConcept C511192102 @default.
- W4327644080 hasConceptScore W4327644080C154945302 @default.
- W4327644080 hasConceptScore W4327644080C162324750 @default.
- W4327644080 hasConceptScore W4327644080C187736073 @default.
- W4327644080 hasConceptScore W4327644080C195324797 @default.
- W4327644080 hasConceptScore W4327644080C199360897 @default.
- W4327644080 hasConceptScore W4327644080C204321447 @default.
- W4327644080 hasConceptScore W4327644080C2776214188 @default.
- W4327644080 hasConceptScore W4327644080C2777530160 @default.
- W4327644080 hasConceptScore W4327644080C2779439875 @default.
- W4327644080 hasConceptScore W4327644080C2780451532 @default.
- W4327644080 hasConceptScore W4327644080C41008148 @default.
- W4327644080 hasConceptScore W4327644080C44291984 @default.
- W4327644080 hasConceptScore W4327644080C4554734 @default.
- W4327644080 hasConceptScore W4327644080C511192102 @default.
- W4327644080 hasLocation W43276440801 @default.
- W4327644080 hasOpenAccess W4327644080 @default.