Matches in SemOpenAlex for { <https://semopenalex.org/work/W4327662047> ?p ?o ?g. }
- W4327662047 endingPage "11323" @default.
- W4327662047 startingPage "11308" @default.
- W4327662047 abstract "Driving behavior is an important aspect of maintaining and sustaining safe transport on the roads. It also directly affects fuel consumption, traffic flow, public health, and air pollution along with psychology and personal mental health. For advanced driving assistance systems (ADAS) and autonomous vehicles, predicting driver behavior helps to facilitate interaction between ADAS and the human driver. Consequently, driver behavior prediction has emerged as an important research topic and has been investigated largely during the past few years. Often, the investigations are based on simulators and controlled environments. Driving behavior can be inferred using control actions, visual monitoring, and inertial measurement unit (IMU) data. This study leverages the IMU data recorded using a smartphone placed inside the vehicle. The dataset contains the accelerometer and gyroscope data recorded from the real traffic environment. Extensive experiments are performed regarding the use of a different set of features, the combination of original and derived features, and binary vs multi-class classification problems; a total of six scenarios are considered. Results reveal that ’timestamp’ is the most important feature and using it with accelerometer and gyroscope features can lead to a 100% accuracy for driver behavior prediction. Without using the ’timestamp’ feature, the number of wrong predictions for ’slow’ and ’normal’ classes is high due to the feature space overlap. Although derived features can help elevate the performance of the models, the models show inferior performance to that of using the ’timestamp’ feature. Deep learning models tend to show poor performance than machine learning models where random forest and extreme gradient boosting machines show a 100% accuracy for multi-class classification." @default.
- W4327662047 created "2023-03-18" @default.
- W4327662047 creator A5022546955 @default.
- W4327662047 creator A5058941449 @default.
- W4327662047 creator A5070702816 @default.
- W4327662047 creator A5074592481 @default.
- W4327662047 creator A5074629800 @default.
- W4327662047 date "2023-06-01" @default.
- W4327662047 modified "2023-09-30" @default.
- W4327662047 title "Smartphone Inertial Measurement Unit Data Features for Analyzing Driver Driving Behavior" @default.
- W4327662047 cites W1965606641 @default.
- W4327662047 cites W2003610960 @default.
- W4327662047 cites W2058501113 @default.
- W4327662047 cites W2066710996 @default.
- W4327662047 cites W2075978773 @default.
- W4327662047 cites W2077886130 @default.
- W4327662047 cites W2094432916 @default.
- W4327662047 cites W2099454382 @default.
- W4327662047 cites W2168231245 @default.
- W4327662047 cites W2520861906 @default.
- W4327662047 cites W2605751614 @default.
- W4327662047 cites W2620829832 @default.
- W4327662047 cites W2896642734 @default.
- W4327662047 cites W2905239410 @default.
- W4327662047 cites W2944702774 @default.
- W4327662047 cites W2972996383 @default.
- W4327662047 cites W2990485458 @default.
- W4327662047 cites W2995392496 @default.
- W4327662047 cites W3001866431 @default.
- W4327662047 cites W3005758751 @default.
- W4327662047 cites W3023995140 @default.
- W4327662047 cites W3035172746 @default.
- W4327662047 cites W3035564946 @default.
- W4327662047 cites W3035574168 @default.
- W4327662047 cites W3036209432 @default.
- W4327662047 cites W3041439603 @default.
- W4327662047 cites W3049249865 @default.
- W4327662047 cites W3089328986 @default.
- W4327662047 cites W3102476541 @default.
- W4327662047 cites W3108751335 @default.
- W4327662047 cites W3118951565 @default.
- W4327662047 cites W3129804215 @default.
- W4327662047 cites W3143898298 @default.
- W4327662047 cites W3153676008 @default.
- W4327662047 cites W3154378057 @default.
- W4327662047 cites W3158742847 @default.
- W4327662047 cites W3172093704 @default.
- W4327662047 cites W3183706914 @default.
- W4327662047 cites W3191048537 @default.
- W4327662047 cites W3193597430 @default.
- W4327662047 cites W3194500974 @default.
- W4327662047 cites W3206651298 @default.
- W4327662047 cites W3215371910 @default.
- W4327662047 cites W4205137648 @default.
- W4327662047 cites W4226124906 @default.
- W4327662047 cites W4226167088 @default.
- W4327662047 cites W4282928510 @default.
- W4327662047 cites W4283072071 @default.
- W4327662047 cites W4312705355 @default.
- W4327662047 cites W4312914077 @default.
- W4327662047 cites W4315815567 @default.
- W4327662047 cites W977807926 @default.
- W4327662047 doi "https://doi.org/10.1109/jsen.2023.3256000" @default.
- W4327662047 hasPublicationYear "2023" @default.
- W4327662047 type Work @default.
- W4327662047 citedByCount "1" @default.
- W4327662047 countsByYear W43276620472023 @default.
- W4327662047 crossrefType "journal-article" @default.
- W4327662047 hasAuthorship W4327662047A5022546955 @default.
- W4327662047 hasAuthorship W4327662047A5058941449 @default.
- W4327662047 hasAuthorship W4327662047A5070702816 @default.
- W4327662047 hasAuthorship W4327662047A5074592481 @default.
- W4327662047 hasAuthorship W4327662047A5074629800 @default.
- W4327662047 hasBestOaLocation W43276620471 @default.
- W4327662047 hasConcept C111919701 @default.
- W4327662047 hasConcept C113954288 @default.
- W4327662047 hasConcept C119857082 @default.
- W4327662047 hasConcept C121332964 @default.
- W4327662047 hasConcept C127413603 @default.
- W4327662047 hasConcept C138885662 @default.
- W4327662047 hasConcept C146978453 @default.
- W4327662047 hasConcept C151233233 @default.
- W4327662047 hasConcept C154945302 @default.
- W4327662047 hasConcept C158488048 @default.
- W4327662047 hasConcept C169258074 @default.
- W4327662047 hasConcept C2776401178 @default.
- W4327662047 hasConcept C41008148 @default.
- W4327662047 hasConcept C41895202 @default.
- W4327662047 hasConcept C44154836 @default.
- W4327662047 hasConcept C60229501 @default.
- W4327662047 hasConcept C62520636 @default.
- W4327662047 hasConcept C76155785 @default.
- W4327662047 hasConcept C79061980 @default.
- W4327662047 hasConcept C79403827 @default.
- W4327662047 hasConcept C89805583 @default.
- W4327662047 hasConceptScore W4327662047C111919701 @default.
- W4327662047 hasConceptScore W4327662047C113954288 @default.
- W4327662047 hasConceptScore W4327662047C119857082 @default.