Matches in SemOpenAlex for { <https://semopenalex.org/work/W4327695242> ?p ?o ?g. }
- W4327695242 endingPage "107121" @default.
- W4327695242 startingPage "107121" @default.
- W4327695242 abstract "With increase of electrical vehicles (EVs), carbon emissions and dependence on fossil energy would be reduced. However, uncoordinated charging may further raise the peak load and magnify the load imbalance which will pose a key challenge to the system reliability. Hence, the peak load shaving whereby coordinated optimal scheduling of EVs and energy storage systems (ESS) has attracted more and more attention. And challenges arise in terms of multiple objectives, algorithms with better global searching performance and constraints handling methods. In this paper, the proposed multi-objective optimal peak load shaving strategy aims to achieve the best peak load shaving effect with the minimum electricity cost whereby coordinated scheduling of EVs and battery energy storage systems (BESS). Especially, load balance constraint, charging/discharging power limits considering state of charge (SOC) as well as capacity limits of EVs and BESS, vehicles to grid (V2G), time-of-use (TOU) price and driving behavior of EVs with different types are all considered. The multi-objective random black-hole particle swarm optimization algorithm (MORBHPSO) with adjustable power redundancy method is adopted. Four case studies have been carried out on a regional distribution network with 130 EVs and 20 BESS. And satisfactory results were obtained in terms of better peak load shaving effect (a 70.6 % decrease in load fluctuation level) and better economic benefit (a 40.56 % reduction in electricity cost). Moreover, MORBHPSO performs better than multi-objective particle swarm optimization algorithm (MOPSO) in terms of a 41.47 % decline in load fluctuation level and a 5.44 % decrease in electricity cost with only half the iterations. Furthermore, it is also found that different from the impact of EVs' driving behavior, TOU price is conducive to obtaining smoother load curve and lower electricity cost." @default.
- W4327695242 created "2023-03-18" @default.
- W4327695242 creator A5029785056 @default.
- W4327695242 creator A5035282947 @default.
- W4327695242 creator A5065208984 @default.
- W4327695242 creator A5065755796 @default.
- W4327695242 creator A5078610964 @default.
- W4327695242 date "2023-08-01" @default.
- W4327695242 modified "2023-09-27" @default.
- W4327695242 title "Multi-objective optimal peak load shaving strategy using coordinated scheduling of EVs and BESS with adoption of MORBHPSO" @default.
- W4327695242 cites W1975824343 @default.
- W4327695242 cites W1992880908 @default.
- W4327695242 cites W2027357857 @default.
- W4327695242 cites W2040611596 @default.
- W4327695242 cites W2076802686 @default.
- W4327695242 cites W2090064571 @default.
- W4327695242 cites W2408665114 @default.
- W4327695242 cites W2435418089 @default.
- W4327695242 cites W2499585228 @default.
- W4327695242 cites W2766028852 @default.
- W4327695242 cites W2772200994 @default.
- W4327695242 cites W2782189251 @default.
- W4327695242 cites W2889790098 @default.
- W4327695242 cites W2891860604 @default.
- W4327695242 cites W2898723544 @default.
- W4327695242 cites W2902284758 @default.
- W4327695242 cites W2916954827 @default.
- W4327695242 cites W2920184096 @default.
- W4327695242 cites W2981847156 @default.
- W4327695242 cites W3013174601 @default.
- W4327695242 cites W3015106906 @default.
- W4327695242 cites W3033682727 @default.
- W4327695242 cites W3038802905 @default.
- W4327695242 cites W3041949465 @default.
- W4327695242 cites W3081787600 @default.
- W4327695242 cites W3121039108 @default.
- W4327695242 cites W3126121722 @default.
- W4327695242 cites W3166020619 @default.
- W4327695242 cites W3186336756 @default.
- W4327695242 cites W3206682034 @default.
- W4327695242 cites W4200550355 @default.
- W4327695242 cites W4205585382 @default.
- W4327695242 cites W4223965176 @default.
- W4327695242 cites W4288032588 @default.
- W4327695242 cites W4297829700 @default.
- W4327695242 cites W4298012349 @default.
- W4327695242 cites W4307548964 @default.
- W4327695242 cites W4313531930 @default.
- W4327695242 doi "https://doi.org/10.1016/j.est.2023.107121" @default.
- W4327695242 hasPublicationYear "2023" @default.
- W4327695242 type Work @default.
- W4327695242 citedByCount "1" @default.
- W4327695242 countsByYear W43276952422023 @default.
- W4327695242 crossrefType "journal-article" @default.
- W4327695242 hasAuthorship W4327695242A5029785056 @default.
- W4327695242 hasAuthorship W4327695242A5035282947 @default.
- W4327695242 hasAuthorship W4327695242A5065208984 @default.
- W4327695242 hasAuthorship W4327695242A5065755796 @default.
- W4327695242 hasAuthorship W4327695242A5078610964 @default.
- W4327695242 hasConcept C11413529 @default.
- W4327695242 hasConcept C119599485 @default.
- W4327695242 hasConcept C121332964 @default.
- W4327695242 hasConcept C126255220 @default.
- W4327695242 hasConcept C127413603 @default.
- W4327695242 hasConcept C138959212 @default.
- W4327695242 hasConcept C154594046 @default.
- W4327695242 hasConcept C163258240 @default.
- W4327695242 hasConcept C171146098 @default.
- W4327695242 hasConcept C187691185 @default.
- W4327695242 hasConcept C188573790 @default.
- W4327695242 hasConcept C200601418 @default.
- W4327695242 hasConcept C206658404 @default.
- W4327695242 hasConcept C206729178 @default.
- W4327695242 hasConcept C2524010 @default.
- W4327695242 hasConcept C2776582896 @default.
- W4327695242 hasConcept C2777908891 @default.
- W4327695242 hasConcept C2779438525 @default.
- W4327695242 hasConcept C2986689482 @default.
- W4327695242 hasConcept C33923547 @default.
- W4327695242 hasConcept C41008148 @default.
- W4327695242 hasConcept C544738498 @default.
- W4327695242 hasConcept C555008776 @default.
- W4327695242 hasConcept C62520636 @default.
- W4327695242 hasConcept C73916439 @default.
- W4327695242 hasConcept C85617194 @default.
- W4327695242 hasConceptScore W4327695242C11413529 @default.
- W4327695242 hasConceptScore W4327695242C119599485 @default.
- W4327695242 hasConceptScore W4327695242C121332964 @default.
- W4327695242 hasConceptScore W4327695242C126255220 @default.
- W4327695242 hasConceptScore W4327695242C127413603 @default.
- W4327695242 hasConceptScore W4327695242C138959212 @default.
- W4327695242 hasConceptScore W4327695242C154594046 @default.
- W4327695242 hasConceptScore W4327695242C163258240 @default.
- W4327695242 hasConceptScore W4327695242C171146098 @default.
- W4327695242 hasConceptScore W4327695242C187691185 @default.
- W4327695242 hasConceptScore W4327695242C188573790 @default.
- W4327695242 hasConceptScore W4327695242C200601418 @default.
- W4327695242 hasConceptScore W4327695242C206658404 @default.