Matches in SemOpenAlex for { <https://semopenalex.org/work/W4327703912> ?p ?o ?g. }
- W4327703912 endingPage "110487" @default.
- W4327703912 startingPage "110487" @default.
- W4327703912 abstract "Many feature extraction methods based on subspace learning have been proposed and applied with good performance. Most existing methods fail to achieve a balance between characterizing the data and the sparsity of the feature weights. At the same time, the assumptions on one specific type of noise may degrade the performance of feature extraction when the data contains complex noise. For these, this paper proposes a robust latent discriminative adaptive graph preserving learning model for feature extraction (RLDAGP). The F-norm is used to preserve the global structure of the data instead of the widely used nuclear norm. Moreover, we prove that the proposed method has a low-dimensional grouping effect, which means that highly correlated samples will be grouped together. Further, a correntropy-inducing metric (CIM) is introduced to the noise matrix to suppress complex noise. Besides, an adaptive graph regularizer is integrated into the model to enhance its robustness while preserving the local structure and enhancing the intra-class compactness. In particular, a transformed l2,1-norm regularization, which is smoothly interpolated in l2,1-norm and F-norm, is introduced to the projection matrix to adaptively extract discriminative features from the data. In order to solve the proposed nonconvex model, we design an algorithm based on nonconvex-ADMM framework and prove the convergence of the proposed algorithm theoretically. Experiments demonstrate the superiority of the proposed method over the existing state-of-the-art methods." @default.
- W4327703912 created "2023-03-18" @default.
- W4327703912 creator A5040542651 @default.
- W4327703912 creator A5077092506 @default.
- W4327703912 date "2023-05-01" @default.
- W4327703912 modified "2023-09-24" @default.
- W4327703912 title "Robust latent discriminative adaptive graph preserving learning for image feature extraction" @default.
- W4327703912 cites W1507780841 @default.
- W4327703912 cites W1997201895 @default.
- W4327703912 cites W2004427069 @default.
- W4327703912 cites W2006793117 @default.
- W4327703912 cites W2030507150 @default.
- W4327703912 cites W2043080228 @default.
- W4327703912 cites W2100659887 @default.
- W4327703912 cites W2123921160 @default.
- W4327703912 cites W2135160607 @default.
- W4327703912 cites W2141538908 @default.
- W4327703912 cites W2145152441 @default.
- W4327703912 cites W2194775991 @default.
- W4327703912 cites W2255388164 @default.
- W4327703912 cites W2343516804 @default.
- W4327703912 cites W2577472518 @default.
- W4327703912 cites W2608501919 @default.
- W4327703912 cites W2769487182 @default.
- W4327703912 cites W2791459777 @default.
- W4327703912 cites W2792991240 @default.
- W4327703912 cites W2794208501 @default.
- W4327703912 cites W2963084307 @default.
- W4327703912 cites W2973099107 @default.
- W4327703912 cites W3010189727 @default.
- W4327703912 cites W3010949679 @default.
- W4327703912 cites W3017718751 @default.
- W4327703912 cites W3087451102 @default.
- W4327703912 cites W3090692296 @default.
- W4327703912 cites W3099945807 @default.
- W4327703912 cites W3126601808 @default.
- W4327703912 cites W3134772852 @default.
- W4327703912 cites W3157326231 @default.
- W4327703912 cites W3160732325 @default.
- W4327703912 cites W3174874173 @default.
- W4327703912 cites W3176549412 @default.
- W4327703912 cites W3177174095 @default.
- W4327703912 cites W3186290349 @default.
- W4327703912 cites W3198293635 @default.
- W4327703912 cites W3198927741 @default.
- W4327703912 cites W3200086554 @default.
- W4327703912 cites W3201922833 @default.
- W4327703912 cites W4200616575 @default.
- W4327703912 cites W4224931260 @default.
- W4327703912 cites W4281941643 @default.
- W4327703912 cites W4282934215 @default.
- W4327703912 cites W4289656101 @default.
- W4327703912 cites W4297984473 @default.
- W4327703912 cites W4298137411 @default.
- W4327703912 cites W4306731729 @default.
- W4327703912 cites W4306953483 @default.
- W4327703912 cites W4308383775 @default.
- W4327703912 cites W4319034492 @default.
- W4327703912 doi "https://doi.org/10.1016/j.knosys.2023.110487" @default.
- W4327703912 hasPublicationYear "2023" @default.
- W4327703912 type Work @default.
- W4327703912 citedByCount "2" @default.
- W4327703912 countsByYear W43277039122023 @default.
- W4327703912 crossrefType "journal-article" @default.
- W4327703912 hasAuthorship W4327703912A5040542651 @default.
- W4327703912 hasAuthorship W4327703912A5077092506 @default.
- W4327703912 hasConcept C104317684 @default.
- W4327703912 hasConcept C11413529 @default.
- W4327703912 hasConcept C153180895 @default.
- W4327703912 hasConcept C154945302 @default.
- W4327703912 hasConcept C185592680 @default.
- W4327703912 hasConcept C32834561 @default.
- W4327703912 hasConcept C41008148 @default.
- W4327703912 hasConcept C55493867 @default.
- W4327703912 hasConcept C63479239 @default.
- W4327703912 hasConcept C97931131 @default.
- W4327703912 hasConceptScore W4327703912C104317684 @default.
- W4327703912 hasConceptScore W4327703912C11413529 @default.
- W4327703912 hasConceptScore W4327703912C153180895 @default.
- W4327703912 hasConceptScore W4327703912C154945302 @default.
- W4327703912 hasConceptScore W4327703912C185592680 @default.
- W4327703912 hasConceptScore W4327703912C32834561 @default.
- W4327703912 hasConceptScore W4327703912C41008148 @default.
- W4327703912 hasConceptScore W4327703912C55493867 @default.
- W4327703912 hasConceptScore W4327703912C63479239 @default.
- W4327703912 hasConceptScore W4327703912C97931131 @default.
- W4327703912 hasLocation W43277039121 @default.
- W4327703912 hasOpenAccess W4327703912 @default.
- W4327703912 hasPrimaryLocation W43277039121 @default.
- W4327703912 hasRelatedWork W1652783584 @default.
- W4327703912 hasRelatedWork W1990254706 @default.
- W4327703912 hasRelatedWork W2024160000 @default.
- W4327703912 hasRelatedWork W2061273563 @default.
- W4327703912 hasRelatedWork W2285052147 @default.
- W4327703912 hasRelatedWork W2321141263 @default.
- W4327703912 hasRelatedWork W2593180407 @default.
- W4327703912 hasRelatedWork W2729514902 @default.
- W4327703912 hasRelatedWork W2773500201 @default.