Matches in SemOpenAlex for { <https://semopenalex.org/work/W4327709671> ?p ?o ?g. }
- W4327709671 endingPage "116921" @default.
- W4327709671 startingPage "116921" @default.
- W4327709671 abstract "Temperature can significantly affect the water equilibrium, electrochemical kinetics and mass transmission in a proton exchange membrane fuel cell (PEMFC) stack, meanwhile it also impacts the lifespan and safety of a lithium-ion battery (LIB). Yet, energy management strategy (EMS) is rarely to synchronously study the durability performances of the LIB and PEMFC stack with their thermal effects in fuel cell vehicles (FCVs) under real-world driving scenarios. Thus, this study proposes a deep reinforcement learning (DRL)-based EMS to minimize transient costs of the LIB and PEMFC stack, which include their state-of-health (SOH) descents and overtemperature penalties. Meanwhile, the transient costs are incorporated into the overall cost, which comprises the hydrogen consumption rate of the PEMFC stack, and penalty of maintaining the LIB state-of-charge (SOC). Moreover, the soft actor-critic (SAC) is applied to the DRL-based EMS due to its advantage of stability across different random environments and no meticulous hyperparameter calibration. Specifically, the proposed EMS intelligently allocates the direct current (DC) bus power of FCVs in real time to maximize a multi-objective reward in accordance with FCV states, in which the reward is the negative overall cost. Then, long-term real-world driving scenarios in Chongqing city, China, are used for off-line training and real-time control to advance the adaptability of the proposed EMS. The results show that in comparison with the deep Q-network (DQN)-based EMS considering the powertrain temperature and durability, and the SAC-based EMS neglecting the powertrain temperature and durability, the proposed strategy can actualize overall SOH increments of the powertrain up to 14.01 % and 3.45 %, respectively, and restrict the maximum temperatures of the PEMFC stack and LIB. In addition, the generalization of the proposed EMS is verified, in which the trained model of the proposed EMS is tested in other FCV and driving cycles, and it can acquire similar effectiveness. Thus, the proposed strategy can enforce the lifespan durability and thermal stability of the powertrain system." @default.
- W4327709671 created "2023-03-18" @default.
- W4327709671 creator A5010695207 @default.
- W4327709671 creator A5013685768 @default.
- W4327709671 creator A5021896115 @default.
- W4327709671 creator A5066471021 @default.
- W4327709671 creator A5074897163 @default.
- W4327709671 creator A5080257789 @default.
- W4327709671 date "2023-05-01" @default.
- W4327709671 modified "2023-09-24" @default.
- W4327709671 title "Energy management strategy for fuel cell vehicles via soft actor-critic-based deep reinforcement learning considering powertrain thermal and durability characteristics" @default.
- W4327709671 cites W1990482606 @default.
- W4327709671 cites W2019277616 @default.
- W4327709671 cites W2145339207 @default.
- W4327709671 cites W2232488926 @default.
- W4327709671 cites W2254122627 @default.
- W4327709671 cites W2593630474 @default.
- W4327709671 cites W2944471439 @default.
- W4327709671 cites W2966607880 @default.
- W4327709671 cites W2968117400 @default.
- W4327709671 cites W2990975667 @default.
- W4327709671 cites W3018254030 @default.
- W4327709671 cites W3019978224 @default.
- W4327709671 cites W3033731711 @default.
- W4327709671 cites W3108459531 @default.
- W4327709671 cites W3118951119 @default.
- W4327709671 cites W3119482039 @default.
- W4327709671 cites W3135246381 @default.
- W4327709671 cites W3157276685 @default.
- W4327709671 cites W3198735030 @default.
- W4327709671 cites W3199371879 @default.
- W4327709671 cites W3217777466 @default.
- W4327709671 cites W4200470509 @default.
- W4327709671 cites W4206921885 @default.
- W4327709671 cites W4212971120 @default.
- W4327709671 cites W4221138616 @default.
- W4327709671 cites W4281260932 @default.
- W4327709671 cites W4292414397 @default.
- W4327709671 cites W4308946724 @default.
- W4327709671 cites W431957507 @default.
- W4327709671 doi "https://doi.org/10.1016/j.enconman.2023.116921" @default.
- W4327709671 hasPublicationYear "2023" @default.
- W4327709671 type Work @default.
- W4327709671 citedByCount "3" @default.
- W4327709671 countsByYear W43277096712023 @default.
- W4327709671 crossrefType "journal-article" @default.
- W4327709671 hasAuthorship W4327709671A5010695207 @default.
- W4327709671 hasAuthorship W4327709671A5013685768 @default.
- W4327709671 hasAuthorship W4327709671A5021896115 @default.
- W4327709671 hasAuthorship W4327709671A5066471021 @default.
- W4327709671 hasAuthorship W4327709671A5074897163 @default.
- W4327709671 hasAuthorship W4327709671A5080257789 @default.
- W4327709671 hasConcept C104304963 @default.
- W4327709671 hasConcept C121332964 @default.
- W4327709671 hasConcept C127413603 @default.
- W4327709671 hasConcept C132319479 @default.
- W4327709671 hasConcept C144171764 @default.
- W4327709671 hasConcept C154945302 @default.
- W4327709671 hasConcept C163258240 @default.
- W4327709671 hasConcept C171146098 @default.
- W4327709671 hasConcept C199360897 @default.
- W4327709671 hasConcept C2777294910 @default.
- W4327709671 hasConcept C2987658370 @default.
- W4327709671 hasConcept C41008148 @default.
- W4327709671 hasConcept C42360764 @default.
- W4327709671 hasConcept C44154836 @default.
- W4327709671 hasConcept C555008776 @default.
- W4327709671 hasConcept C62520636 @default.
- W4327709671 hasConcept C76047896 @default.
- W4327709671 hasConcept C77088390 @default.
- W4327709671 hasConcept C9395851 @default.
- W4327709671 hasConcept C97355855 @default.
- W4327709671 hasConcept C97541855 @default.
- W4327709671 hasConceptScore W4327709671C104304963 @default.
- W4327709671 hasConceptScore W4327709671C121332964 @default.
- W4327709671 hasConceptScore W4327709671C127413603 @default.
- W4327709671 hasConceptScore W4327709671C132319479 @default.
- W4327709671 hasConceptScore W4327709671C144171764 @default.
- W4327709671 hasConceptScore W4327709671C154945302 @default.
- W4327709671 hasConceptScore W4327709671C163258240 @default.
- W4327709671 hasConceptScore W4327709671C171146098 @default.
- W4327709671 hasConceptScore W4327709671C199360897 @default.
- W4327709671 hasConceptScore W4327709671C2777294910 @default.
- W4327709671 hasConceptScore W4327709671C2987658370 @default.
- W4327709671 hasConceptScore W4327709671C41008148 @default.
- W4327709671 hasConceptScore W4327709671C42360764 @default.
- W4327709671 hasConceptScore W4327709671C44154836 @default.
- W4327709671 hasConceptScore W4327709671C555008776 @default.
- W4327709671 hasConceptScore W4327709671C62520636 @default.
- W4327709671 hasConceptScore W4327709671C76047896 @default.
- W4327709671 hasConceptScore W4327709671C77088390 @default.
- W4327709671 hasConceptScore W4327709671C9395851 @default.
- W4327709671 hasConceptScore W4327709671C97355855 @default.
- W4327709671 hasConceptScore W4327709671C97541855 @default.
- W4327709671 hasLocation W43277096711 @default.
- W4327709671 hasOpenAccess W4327709671 @default.
- W4327709671 hasPrimaryLocation W43277096711 @default.
- W4327709671 hasRelatedWork W2010297825 @default.