Matches in SemOpenAlex for { <https://semopenalex.org/work/W4327712981> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4327712981 abstract "Abstract The neural network approach is used to resolve the interdependencies between inputs and outputs in a major conflict on the Malaysian Federal Route’s unsignalized intersection (UI).Two group of dataset being use in this study, they are right turning motor vehicle (RTMs) which consist eight hundred forty five data and serious conflict lane change model, consist three hundred sixty three dataset. The aim of the study are to develop serious conflict lane change model by using artificial neuron network (ANN) and logistic regression method (LRM) and to identify the risk of right turning motor vehicle (RTMs) behaviour. The input data consists traffic behaviour, type of gap, road geometry and traffic facilities. Subsequently the output data will be lane change serious conflict, the study utilize SPSS 26 statistic software. The first section of the study covers the neural network, while the second section describes the strategy utilised to analyse the scientific work. Third part cover the simple analysis of lane change serious conflict and analysis of gap types. Last part is comparison result between logistic regression method and artificial neuron network. This study reveals that lane change due angular conflict, speed limit 50kph, Gap 3 type, second passenger car, motorcycles, motorcycle stop near passenger car, traffic light and lane width were found significance in lane change serious conflict models. The study has determine that RTMs is motorcycle as vulnerable mode of transport. Besides, this study found that the combination between both method ANN and LRM sustainable hydrodynamic and complement each other especially on explaining the outcomes result." @default.
- W4327712981 created "2023-03-18" @default.
- W4327712981 creator A5010119544 @default.
- W4327712981 creator A5023291793 @default.
- W4327712981 creator A5050991529 @default.
- W4327712981 creator A5052667821 @default.
- W4327712981 date "2023-03-17" @default.
- W4327712981 modified "2023-09-24" @default.
- W4327712981 title "Sustainable Hydrodynamic of Artificial Neural Networks and Logistic Regression Model to Lane Change Serious Conflict at Unsignalized Intersection on Malaysia’s Federal Route" @default.
- W4327712981 cites W1742927435 @default.
- W4327712981 cites W1890199640 @default.
- W4327712981 cites W1966963739 @default.
- W4327712981 cites W1969320611 @default.
- W4327712981 cites W1999815278 @default.
- W4327712981 cites W2000573066 @default.
- W4327712981 cites W2031575274 @default.
- W4327712981 cites W2058083416 @default.
- W4327712981 cites W2060010113 @default.
- W4327712981 cites W2068277450 @default.
- W4327712981 cites W2090403203 @default.
- W4327712981 cites W2091562509 @default.
- W4327712981 cites W2107907375 @default.
- W4327712981 cites W2128965713 @default.
- W4327712981 cites W2565516711 @default.
- W4327712981 cites W2580709969 @default.
- W4327712981 cites W2770753422 @default.
- W4327712981 cites W2778468755 @default.
- W4327712981 cites W2808924317 @default.
- W4327712981 cites W2905650837 @default.
- W4327712981 cites W2912923646 @default.
- W4327712981 cites W2929012434 @default.
- W4327712981 cites W2954045164 @default.
- W4327712981 cites W2957045907 @default.
- W4327712981 cites W2963463709 @default.
- W4327712981 doi "https://doi.org/10.21203/rs.3.rs-2682520/v1" @default.
- W4327712981 hasPublicationYear "2023" @default.
- W4327712981 type Work @default.
- W4327712981 citedByCount "0" @default.
- W4327712981 crossrefType "posted-content" @default.
- W4327712981 hasAuthorship W4327712981A5010119544 @default.
- W4327712981 hasAuthorship W4327712981A5023291793 @default.
- W4327712981 hasAuthorship W4327712981A5050991529 @default.
- W4327712981 hasAuthorship W4327712981A5052667821 @default.
- W4327712981 hasBestOaLocation W43277129811 @default.
- W4327712981 hasConcept C119857082 @default.
- W4327712981 hasConcept C127413603 @default.
- W4327712981 hasConcept C151956035 @default.
- W4327712981 hasConcept C154945302 @default.
- W4327712981 hasConcept C207512268 @default.
- W4327712981 hasConcept C22212356 @default.
- W4327712981 hasConcept C2780210587 @default.
- W4327712981 hasConcept C38652104 @default.
- W4327712981 hasConcept C41008148 @default.
- W4327712981 hasConcept C50644808 @default.
- W4327712981 hasConcept C64543145 @default.
- W4327712981 hasConceptScore W4327712981C119857082 @default.
- W4327712981 hasConceptScore W4327712981C127413603 @default.
- W4327712981 hasConceptScore W4327712981C151956035 @default.
- W4327712981 hasConceptScore W4327712981C154945302 @default.
- W4327712981 hasConceptScore W4327712981C207512268 @default.
- W4327712981 hasConceptScore W4327712981C22212356 @default.
- W4327712981 hasConceptScore W4327712981C2780210587 @default.
- W4327712981 hasConceptScore W4327712981C38652104 @default.
- W4327712981 hasConceptScore W4327712981C41008148 @default.
- W4327712981 hasConceptScore W4327712981C50644808 @default.
- W4327712981 hasConceptScore W4327712981C64543145 @default.
- W4327712981 hasLocation W43277129811 @default.
- W4327712981 hasOpenAccess W4327712981 @default.
- W4327712981 hasPrimaryLocation W43277129811 @default.
- W4327712981 hasRelatedWork W2023931648 @default.
- W4327712981 hasRelatedWork W2206407754 @default.
- W4327712981 hasRelatedWork W2393134288 @default.
- W4327712981 hasRelatedWork W2564869632 @default.
- W4327712981 hasRelatedWork W2986348191 @default.
- W4327712981 hasRelatedWork W3040229530 @default.
- W4327712981 hasRelatedWork W4214527396 @default.
- W4327712981 hasRelatedWork W568287540 @default.
- W4327712981 hasRelatedWork W1274379089 @default.
- W4327712981 hasRelatedWork W2803041665 @default.
- W4327712981 isParatext "false" @default.
- W4327712981 isRetracted "false" @default.
- W4327712981 workType "article" @default.