Matches in SemOpenAlex for { <https://semopenalex.org/work/W4327716500> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4327716500 endingPage "572" @default.
- W4327716500 startingPage "563" @default.
- W4327716500 abstract "Pedestrian deaths account for 23% of all road traffic fatalities worldwide. After declining for three decades, pedestrian fatalities in the United States have been increasing with 6,941 fatalities in 2020, the highest number for more than two decades, impeding progress toward a zero-deaths transportation system. The Pedestrian and Bicycle Crash Analysis Tool (PBCAT) was developed to describe the pre-crash actions of the parties involved to better define the sequence of events and precipitating actions that lead to crashes involving motor vehicles and pedestrians or cyclists. Undoubtedly, police crash data influence decision-making processes in the transportation agencies. Using crash data from three major cities in Texas (during the period from 2018 to 2020), this study assessed the data quality of police-reported crash narratives on pedestrian-involved traffic crashes. As the pedestrian crash typing involves many categories, conventional machine-learning algorithms will not be sufficient in solving the classification problem from narrative texts. This study used few-shot learning (FSL), an advanced machine learning, to solve this issue. Using the pre-knowledge obtained from five different crash types and a few labeled data points of three unseen new crash types, the proposed model achieved roughly 40% overall accuracy. Also, four different configurations of crash types were formed and tested which indicates that the model is robust." @default.
- W4327716500 created "2023-03-18" @default.
- W4327716500 creator A5004882138 @default.
- W4327716500 creator A5006472136 @default.
- W4327716500 creator A5053621729 @default.
- W4327716500 date "2023-03-17" @default.
- W4327716500 modified "2023-09-28" @default.
- W4327716500 title "Applying Few-Shot Learning in Classifying Pedestrian Crash Typing" @default.
- W4327716500 cites W2573367869 @default.
- W4327716500 cites W2964105864 @default.
- W4327716500 cites W2985778172 @default.
- W4327716500 cites W3037324494 @default.
- W4327716500 cites W3113202420 @default.
- W4327716500 cites W3128513378 @default.
- W4327716500 cites W3149899494 @default.
- W4327716500 cites W3155638556 @default.
- W4327716500 cites W3211641117 @default.
- W4327716500 cites W4313543240 @default.
- W4327716500 cites W4318614861 @default.
- W4327716500 cites W4323363472 @default.
- W4327716500 cites W4366779715 @default.
- W4327716500 doi "https://doi.org/10.1177/03611981231157393" @default.
- W4327716500 hasPublicationYear "2023" @default.
- W4327716500 type Work @default.
- W4327716500 citedByCount "0" @default.
- W4327716500 crossrefType "journal-article" @default.
- W4327716500 hasAuthorship W4327716500A5004882138 @default.
- W4327716500 hasAuthorship W4327716500A5006472136 @default.
- W4327716500 hasAuthorship W4327716500A5053621729 @default.
- W4327716500 hasConcept C119857082 @default.
- W4327716500 hasConcept C127413603 @default.
- W4327716500 hasConcept C154945302 @default.
- W4327716500 hasConcept C183469790 @default.
- W4327716500 hasConcept C199360897 @default.
- W4327716500 hasConcept C22212356 @default.
- W4327716500 hasConcept C2777113093 @default.
- W4327716500 hasConcept C3017944768 @default.
- W4327716500 hasConcept C38652104 @default.
- W4327716500 hasConcept C41008148 @default.
- W4327716500 hasConcept C545542383 @default.
- W4327716500 hasConcept C71924100 @default.
- W4327716500 hasConceptScore W4327716500C119857082 @default.
- W4327716500 hasConceptScore W4327716500C127413603 @default.
- W4327716500 hasConceptScore W4327716500C154945302 @default.
- W4327716500 hasConceptScore W4327716500C183469790 @default.
- W4327716500 hasConceptScore W4327716500C199360897 @default.
- W4327716500 hasConceptScore W4327716500C22212356 @default.
- W4327716500 hasConceptScore W4327716500C2777113093 @default.
- W4327716500 hasConceptScore W4327716500C3017944768 @default.
- W4327716500 hasConceptScore W4327716500C38652104 @default.
- W4327716500 hasConceptScore W4327716500C41008148 @default.
- W4327716500 hasConceptScore W4327716500C545542383 @default.
- W4327716500 hasConceptScore W4327716500C71924100 @default.
- W4327716500 hasIssue "8" @default.
- W4327716500 hasLocation W43277165001 @default.
- W4327716500 hasOpenAccess W4327716500 @default.
- W4327716500 hasPrimaryLocation W43277165001 @default.
- W4327716500 hasRelatedWork W1992272816 @default.
- W4327716500 hasRelatedWork W2005961628 @default.
- W4327716500 hasRelatedWork W2113711287 @default.
- W4327716500 hasRelatedWork W2548402296 @default.
- W4327716500 hasRelatedWork W2747071951 @default.
- W4327716500 hasRelatedWork W2795772895 @default.
- W4327716500 hasRelatedWork W2809421447 @default.
- W4327716500 hasRelatedWork W2899360499 @default.
- W4327716500 hasRelatedWork W4206258244 @default.
- W4327716500 hasRelatedWork W4250131365 @default.
- W4327716500 hasVolume "2677" @default.
- W4327716500 isParatext "false" @default.
- W4327716500 isRetracted "false" @default.
- W4327716500 workType "article" @default.