Matches in SemOpenAlex for { <https://semopenalex.org/work/W4327716805> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4327716805 endingPage "9310" @default.
- W4327716805 startingPage "9297" @default.
- W4327716805 abstract "The use of smartphones is increasing rapidly and the malicious intrusions associated with it have become a challenging task that needs to be resolved. A secure and effective technique is needed to prevent breaches and detect malicious applications. Through deep learning methods and neural networks, the earliest detection and classification of malware can be performed. Detection of Android malware is the process to identify malicious attackers and through the classification method of malware, the type is categorized as adware, ransomware, SMS malware, and scareware. Since there were several techniques employed so far for malware detection and classification, there were some limitations like a reduced rate of accuracy and so on. To overcome these limitations, a deep learning-based automated process is employed to identify the malware. In this paper, initially, the datasets are collected, and through the preprocessing method, the duplicate and noisy data are removed to improve accuracy. Then the separated malware and benign dataset from the preprocessing phase is dealt with in feature selection. The reliable features are extracted in this process by Meta-Heuristic Artificial Jellyfish Search Optimizer (MH-AJSO). Further by the process of classification, the type of malware is categorized. The classification method is performed by the proposed Dense Dilated ResNet101 (DDResNet101) classifier. According to the type of malware the breach is prevented and secured on the android device. Although several methods of malware detection are found in the android platform the accuracy is effectively derived in our proposed system. Various performance analysis is performed to compare the robustness of detection. The results show that better accuracy of 98% is achieved in the proposed model with effectiveness for identifying the malware and thereby breaches and intrusion can be prevented." @default.
- W4327716805 created "2023-03-18" @default.
- W4327716805 creator A5030963418 @default.
- W4327716805 creator A5068928218 @default.
- W4327716805 date "2023-06-01" @default.
- W4327716805 modified "2023-09-27" @default.
- W4327716805 title "An optimal deep learning-based framework for the detection and classification of android malware" @default.
- W4327716805 cites W2591102410 @default.
- W4327716805 cites W2753669113 @default.
- W4327716805 cites W2774347535 @default.
- W4327716805 cites W2792310543 @default.
- W4327716805 cites W2807671950 @default.
- W4327716805 cites W2885070483 @default.
- W4327716805 cites W2900275727 @default.
- W4327716805 cites W2990114920 @default.
- W4327716805 cites W3016595359 @default.
- W4327716805 cites W3039088822 @default.
- W4327716805 cites W3112311055 @default.
- W4327716805 cites W3120945926 @default.
- W4327716805 cites W3121341762 @default.
- W4327716805 cites W3147879240 @default.
- W4327716805 cites W4205876068 @default.
- W4327716805 doi "https://doi.org/10.3233/jifs-230186" @default.
- W4327716805 hasPublicationYear "2023" @default.
- W4327716805 type Work @default.
- W4327716805 citedByCount "0" @default.
- W4327716805 crossrefType "journal-article" @default.
- W4327716805 hasAuthorship W4327716805A5030963418 @default.
- W4327716805 hasAuthorship W4327716805A5068928218 @default.
- W4327716805 hasConcept C10551718 @default.
- W4327716805 hasConcept C108583219 @default.
- W4327716805 hasConcept C111919701 @default.
- W4327716805 hasConcept C119857082 @default.
- W4327716805 hasConcept C124101348 @default.
- W4327716805 hasConcept C148483581 @default.
- W4327716805 hasConcept C154945302 @default.
- W4327716805 hasConcept C2777667771 @default.
- W4327716805 hasConcept C2778579508 @default.
- W4327716805 hasConcept C2989133298 @default.
- W4327716805 hasConcept C34736171 @default.
- W4327716805 hasConcept C38652104 @default.
- W4327716805 hasConcept C41008148 @default.
- W4327716805 hasConcept C541664917 @default.
- W4327716805 hasConcept C557433098 @default.
- W4327716805 hasConcept C95623464 @default.
- W4327716805 hasConceptScore W4327716805C10551718 @default.
- W4327716805 hasConceptScore W4327716805C108583219 @default.
- W4327716805 hasConceptScore W4327716805C111919701 @default.
- W4327716805 hasConceptScore W4327716805C119857082 @default.
- W4327716805 hasConceptScore W4327716805C124101348 @default.
- W4327716805 hasConceptScore W4327716805C148483581 @default.
- W4327716805 hasConceptScore W4327716805C154945302 @default.
- W4327716805 hasConceptScore W4327716805C2777667771 @default.
- W4327716805 hasConceptScore W4327716805C2778579508 @default.
- W4327716805 hasConceptScore W4327716805C2989133298 @default.
- W4327716805 hasConceptScore W4327716805C34736171 @default.
- W4327716805 hasConceptScore W4327716805C38652104 @default.
- W4327716805 hasConceptScore W4327716805C41008148 @default.
- W4327716805 hasConceptScore W4327716805C541664917 @default.
- W4327716805 hasConceptScore W4327716805C557433098 @default.
- W4327716805 hasConceptScore W4327716805C95623464 @default.
- W4327716805 hasIssue "6" @default.
- W4327716805 hasLocation W43277168051 @default.
- W4327716805 hasOpenAccess W4327716805 @default.
- W4327716805 hasPrimaryLocation W43277168051 @default.
- W4327716805 hasRelatedWork W3025671632 @default.
- W4327716805 hasRelatedWork W3082603384 @default.
- W4327716805 hasRelatedWork W3162241107 @default.
- W4327716805 hasRelatedWork W3172180714 @default.
- W4327716805 hasRelatedWork W3178076962 @default.
- W4327716805 hasRelatedWork W4200493858 @default.
- W4327716805 hasRelatedWork W4210772651 @default.
- W4327716805 hasRelatedWork W4225292389 @default.
- W4327716805 hasRelatedWork W4313416654 @default.
- W4327716805 hasRelatedWork W4316659894 @default.
- W4327716805 hasVolume "44" @default.
- W4327716805 isParatext "false" @default.
- W4327716805 isRetracted "false" @default.
- W4327716805 workType "article" @default.