Matches in SemOpenAlex for { <https://semopenalex.org/work/W4327717008> ?p ?o ?g. }
- W4327717008 endingPage "104808" @default.
- W4327717008 startingPage "104808" @default.
- W4327717008 abstract "Chemical recognition using machine learning based on detection by gas sensors relies on the accuracy and sensitivity of the sensors at capturing the key features of target classes. In some cases, however, the electronic signal transduced from the detection of analytes does not completely represent the key attributes, resulting in inaccurate classification results when trained from signal data alone. To overcome this shortcoming, we propose a novel “chemistry-informed” machine learning framework composed of two modules. From available sensor response data, Module 1 identifies and predicts the chemical properties of the analytes that give rise to the sensitivity and selectivity of the sensors, and Module 2 performs final classifications using the dataset concatenating predicted chemical properties and raw sensor responses. To evaluate the performance and generalizability of our methodology, we conducted experiments with three gas sensor array datasets for gas detection. In all the cases, the performance of gas species classification was improved when the raw features were combined with the predicted chemical property features. The main contribution of our framework is that it bridges the gap between the gas sensor signals and the target analytes, thereby improving classification performance beyond that of models trained exclusively on sensor response data." @default.
- W4327717008 created "2023-03-18" @default.
- W4327717008 creator A5002143999 @default.
- W4327717008 creator A5007044119 @default.
- W4327717008 creator A5030411008 @default.
- W4327717008 creator A5035883243 @default.
- W4327717008 creator A5039786986 @default.
- W4327717008 creator A5074384928 @default.
- W4327717008 date "2023-06-01" @default.
- W4327717008 modified "2023-10-18" @default.
- W4327717008 title "Chemistry-informed machine learning: Using chemical property features to improve gas classification performance" @default.
- W4327717008 cites W1927170233 @default.
- W4327717008 cites W1970636506 @default.
- W4327717008 cites W1971842403 @default.
- W4327717008 cites W1973835845 @default.
- W4327717008 cites W1984981454 @default.
- W4327717008 cites W1989950657 @default.
- W4327717008 cites W1997012016 @default.
- W4327717008 cites W1997951586 @default.
- W4327717008 cites W2000561743 @default.
- W4327717008 cites W2002799357 @default.
- W4327717008 cites W2004239778 @default.
- W4327717008 cites W2033803849 @default.
- W4327717008 cites W2037517551 @default.
- W4327717008 cites W2240052501 @default.
- W4327717008 cites W2316446290 @default.
- W4327717008 cites W2408694649 @default.
- W4327717008 cites W2575731723 @default.
- W4327717008 cites W2589330732 @default.
- W4327717008 cites W2751399725 @default.
- W4327717008 cites W2753024880 @default.
- W4327717008 cites W2883485963 @default.
- W4327717008 cites W2886869471 @default.
- W4327717008 cites W2906171532 @default.
- W4327717008 cites W2928852838 @default.
- W4327717008 cites W2940864740 @default.
- W4327717008 cites W2954826798 @default.
- W4327717008 cites W2963587312 @default.
- W4327717008 cites W2970378979 @default.
- W4327717008 cites W2972976153 @default.
- W4327717008 cites W2996659287 @default.
- W4327717008 cites W3016140260 @default.
- W4327717008 cites W3036032205 @default.
- W4327717008 cites W3038160504 @default.
- W4327717008 cites W3104909390 @default.
- W4327717008 cites W3115139441 @default.
- W4327717008 cites W3135093595 @default.
- W4327717008 cites W3135304572 @default.
- W4327717008 cites W3163993681 @default.
- W4327717008 cites W3169346988 @default.
- W4327717008 cites W4200132597 @default.
- W4327717008 cites W4205462788 @default.
- W4327717008 cites W4206449743 @default.
- W4327717008 cites W4213451987 @default.
- W4327717008 doi "https://doi.org/10.1016/j.chemolab.2023.104808" @default.
- W4327717008 hasPublicationYear "2023" @default.
- W4327717008 type Work @default.
- W4327717008 citedByCount "1" @default.
- W4327717008 countsByYear W43277170082023 @default.
- W4327717008 crossrefType "journal-article" @default.
- W4327717008 hasAuthorship W4327717008A5002143999 @default.
- W4327717008 hasAuthorship W4327717008A5007044119 @default.
- W4327717008 hasAuthorship W4327717008A5030411008 @default.
- W4327717008 hasAuthorship W4327717008A5035883243 @default.
- W4327717008 hasAuthorship W4327717008A5039786986 @default.
- W4327717008 hasAuthorship W4327717008A5074384928 @default.
- W4327717008 hasBestOaLocation W43277170081 @default.
- W4327717008 hasConcept C10390740 @default.
- W4327717008 hasConcept C105795698 @default.
- W4327717008 hasConcept C111472728 @default.
- W4327717008 hasConcept C119857082 @default.
- W4327717008 hasConcept C124101348 @default.
- W4327717008 hasConcept C127413603 @default.
- W4327717008 hasConcept C132964779 @default.
- W4327717008 hasConcept C138885662 @default.
- W4327717008 hasConcept C147789679 @default.
- W4327717008 hasConcept C153180895 @default.
- W4327717008 hasConcept C154945302 @default.
- W4327717008 hasConcept C17525397 @default.
- W4327717008 hasConcept C185592680 @default.
- W4327717008 hasConcept C189950617 @default.
- W4327717008 hasConcept C199360897 @default.
- W4327717008 hasConcept C21200559 @default.
- W4327717008 hasConcept C24326235 @default.
- W4327717008 hasConcept C26517878 @default.
- W4327717008 hasConcept C27158222 @default.
- W4327717008 hasConcept C2779843651 @default.
- W4327717008 hasConcept C2984356252 @default.
- W4327717008 hasConcept C33923547 @default.
- W4327717008 hasConcept C38652104 @default.
- W4327717008 hasConcept C41008148 @default.
- W4327717008 hasConcept C43617362 @default.
- W4327717008 hasConceptScore W4327717008C10390740 @default.
- W4327717008 hasConceptScore W4327717008C105795698 @default.
- W4327717008 hasConceptScore W4327717008C111472728 @default.
- W4327717008 hasConceptScore W4327717008C119857082 @default.
- W4327717008 hasConceptScore W4327717008C124101348 @default.
- W4327717008 hasConceptScore W4327717008C127413603 @default.