Matches in SemOpenAlex for { <https://semopenalex.org/work/W4327718129> ?p ?o ?g. }
- W4327718129 endingPage "104630" @default.
- W4327718129 startingPage "104630" @default.
- W4327718129 abstract "Model-free data-driven computational mechanics (DDCM) is a new paradigm for simulations in solid mechanics. The modeling step associated to the definition of a material constitutive law is circumvented through the introduction of an abstract phase space in which, following a pre-defined rule, physically-admissible states are matched to observed material response data (coming from either experiments or lower-scale simulations). In terms of computational resources, the search procedure that performs these matches is the most onerous step in the algorithm. One of the main advantages of DDCM is the fact that it avoids regression-based, bias-prone constitutive modeling. However, many materials do display a simple linear response in the small-strain regime while also presenting complex behavior after a certain deformation threshold. Motivated by this fact, we present a novel refinement technique that turns regular elements (equipped with a linear-elastic constitutive law) into data-driven ones if they are expected to surpass the threshold known to trigger material non-linear response. We term this technique “data refinement”, “d-refinement” for short. It works both with data-driven elements based on either DDCM or strain–stress relations learned from data using neural networks. Starting from an initially regular FEM mesh, the proposed algorithm detects where the refinement is needed and iterates until all elements presumed to display non-linearity become data-driven ones. Insertion criteria are discussed. The scheme is well-suited for simulations that feature non-linear response in relatively small portions of the domain while the rest remains linear-elastic. The method is validated against a traditional incremental solver (i.e., Newton–Raphson method) and we show that the d-refinement framework can outperform it in terms of speed at no loss of accuracy. We provide an application that showcases the advantage of the new method: bridging scales in architected metamaterials. For this application, we also succinctly outline how d-refinement can be used in conjunction with a neural network trained on microscale data." @default.
- W4327718129 created "2023-03-18" @default.
- W4327718129 creator A5007064413 @default.
- W4327718129 creator A5054661641 @default.
- W4327718129 creator A5064906626 @default.
- W4327718129 date "2023-05-01" @default.
- W4327718129 modified "2023-10-17" @default.
- W4327718129 title "Mesh d-refinement: A data-based computational framework to account for complex material response" @default.
- W4327718129 cites W1917020151 @default.
- W4327718129 cites W1971171468 @default.
- W4327718129 cites W1974209707 @default.
- W4327718129 cites W2030130029 @default.
- W4327718129 cites W2046284349 @default.
- W4327718129 cites W2094975154 @default.
- W4327718129 cites W2116045087 @default.
- W4327718129 cites W2140792632 @default.
- W4327718129 cites W2261676784 @default.
- W4327718129 cites W2624989300 @default.
- W4327718129 cites W2626934721 @default.
- W4327718129 cites W2742924364 @default.
- W4327718129 cites W2769214690 @default.
- W4327718129 cites W2884257014 @default.
- W4327718129 cites W2889287912 @default.
- W4327718129 cites W2992437451 @default.
- W4327718129 cites W3014388579 @default.
- W4327718129 cites W3028072861 @default.
- W4327718129 cites W3048249995 @default.
- W4327718129 cites W3108104385 @default.
- W4327718129 cites W3137096911 @default.
- W4327718129 cites W3137640456 @default.
- W4327718129 cites W3138096931 @default.
- W4327718129 cites W3160498511 @default.
- W4327718129 cites W3173789974 @default.
- W4327718129 cites W3175120509 @default.
- W4327718129 cites W3217544405 @default.
- W4327718129 cites W4210434508 @default.
- W4327718129 cites W4220923827 @default.
- W4327718129 cites W4225405004 @default.
- W4327718129 cites W4283067940 @default.
- W4327718129 cites W4298093544 @default.
- W4327718129 cites W4307154607 @default.
- W4327718129 doi "https://doi.org/10.1016/j.mechmat.2023.104630" @default.
- W4327718129 hasPublicationYear "2023" @default.
- W4327718129 type Work @default.
- W4327718129 citedByCount "1" @default.
- W4327718129 countsByYear W43277181292023 @default.
- W4327718129 crossrefType "journal-article" @default.
- W4327718129 hasAuthorship W4327718129A5007064413 @default.
- W4327718129 hasAuthorship W4327718129A5054661641 @default.
- W4327718129 hasAuthorship W4327718129A5064906626 @default.
- W4327718129 hasBestOaLocation W43277181291 @default.
- W4327718129 hasConcept C11413529 @default.
- W4327718129 hasConcept C121332964 @default.
- W4327718129 hasConcept C127413603 @default.
- W4327718129 hasConcept C131053463 @default.
- W4327718129 hasConcept C134306372 @default.
- W4327718129 hasConcept C135628077 @default.
- W4327718129 hasConcept C140479938 @default.
- W4327718129 hasConcept C158622935 @default.
- W4327718129 hasConcept C202973686 @default.
- W4327718129 hasConcept C3161131 @default.
- W4327718129 hasConcept C33923547 @default.
- W4327718129 hasConcept C41008148 @default.
- W4327718129 hasConcept C459310 @default.
- W4327718129 hasConcept C62520636 @default.
- W4327718129 hasConcept C66938386 @default.
- W4327718129 hasConcept C72514878 @default.
- W4327718129 hasConcept C80444323 @default.
- W4327718129 hasConceptScore W4327718129C11413529 @default.
- W4327718129 hasConceptScore W4327718129C121332964 @default.
- W4327718129 hasConceptScore W4327718129C127413603 @default.
- W4327718129 hasConceptScore W4327718129C131053463 @default.
- W4327718129 hasConceptScore W4327718129C134306372 @default.
- W4327718129 hasConceptScore W4327718129C135628077 @default.
- W4327718129 hasConceptScore W4327718129C140479938 @default.
- W4327718129 hasConceptScore W4327718129C158622935 @default.
- W4327718129 hasConceptScore W4327718129C202973686 @default.
- W4327718129 hasConceptScore W4327718129C3161131 @default.
- W4327718129 hasConceptScore W4327718129C33923547 @default.
- W4327718129 hasConceptScore W4327718129C41008148 @default.
- W4327718129 hasConceptScore W4327718129C459310 @default.
- W4327718129 hasConceptScore W4327718129C62520636 @default.
- W4327718129 hasConceptScore W4327718129C66938386 @default.
- W4327718129 hasConceptScore W4327718129C72514878 @default.
- W4327718129 hasConceptScore W4327718129C80444323 @default.
- W4327718129 hasFunder F4320320924 @default.
- W4327718129 hasLocation W43277181291 @default.
- W4327718129 hasLocation W43277181292 @default.
- W4327718129 hasLocation W43277181293 @default.
- W4327718129 hasOpenAccess W4327718129 @default.
- W4327718129 hasPrimaryLocation W43277181291 @default.
- W4327718129 hasRelatedWork W1486898455 @default.
- W4327718129 hasRelatedWork W2041905724 @default.
- W4327718129 hasRelatedWork W2047986527 @default.
- W4327718129 hasRelatedWork W2522254948 @default.
- W4327718129 hasRelatedWork W3090727460 @default.
- W4327718129 hasRelatedWork W3103325625 @default.
- W4327718129 hasRelatedWork W3128682647 @default.