Matches in SemOpenAlex for { <https://semopenalex.org/work/W4327719364> ?p ?o ?g. }
- W4327719364 abstract "Abstract We developed a machine learning based surrogate model to identify sustainability pathways through rapid scenario generation and defined the safe operating space for achieving them via scenario discovery. We trained a surrogate model to replicate the Land‐Use Trade‐Offs integrated model of the Australian land system. Latin hypercube sampling was used to create many scenarios exploring the impact of uncertainties in key drivers including future socio‐economic development, climate change mitigation, and agricultural productivity at a granular level. Economic and environmental impacts were evaluated against nationally downscaled SDG targets. Scenario discovery revealed new pathways to achieving five SDG targets for 2050 which required crop yield increases above 1.78 times, a carbon price above 100 AU$ tCO 2 −1 , a >9% biodiversity levy on carbon plantings, and carefully regulated land‐use policy. Machine learning based surrogate modeling teamed with scenario discovery revealed the policy and scenario settings required for a more sustainable future for the Australian land sector." @default.
- W4327719364 created "2023-03-18" @default.
- W4327719364 creator A5002934453 @default.
- W4327719364 creator A5004653709 @default.
- W4327719364 creator A5046309576 @default.
- W4327719364 creator A5082520943 @default.
- W4327719364 creator A5090734936 @default.
- W4327719364 date "2023-03-01" @default.
- W4327719364 modified "2023-10-06" @default.
- W4327719364 title "Quantifying the Safe Operating Space for Land‐System SDG Achievement via Machine Learning and Scenario Discovery" @default.
- W4327719364 cites W1678356000 @default.
- W4327719364 cites W1955601737 @default.
- W4327719364 cites W1968967058 @default.
- W4327719364 cites W1971566985 @default.
- W4327719364 cites W1985529541 @default.
- W4327719364 cites W1991308688 @default.
- W4327719364 cites W1992193293 @default.
- W4327719364 cites W2026613879 @default.
- W4327719364 cites W2054653365 @default.
- W4327719364 cites W2070493638 @default.
- W4327719364 cites W2088748018 @default.
- W4327719364 cites W2091316306 @default.
- W4327719364 cites W2102201073 @default.
- W4327719364 cites W2106357889 @default.
- W4327719364 cites W2108940449 @default.
- W4327719364 cites W2123577962 @default.
- W4327719364 cites W2136224740 @default.
- W4327719364 cites W2161924672 @default.
- W4327719364 cites W2190911931 @default.
- W4327719364 cites W2209244284 @default.
- W4327719364 cites W2228663435 @default.
- W4327719364 cites W2268409958 @default.
- W4327719364 cites W2312152292 @default.
- W4327719364 cites W2337225114 @default.
- W4327719364 cites W2604765399 @default.
- W4327719364 cites W2607365340 @default.
- W4327719364 cites W2734681571 @default.
- W4327719364 cites W2793398286 @default.
- W4327719364 cites W2907662870 @default.
- W4327719364 cites W2914336134 @default.
- W4327719364 cites W2940832340 @default.
- W4327719364 cites W2962928006 @default.
- W4327719364 cites W2980041161 @default.
- W4327719364 cites W3034547862 @default.
- W4327719364 cites W3041032185 @default.
- W4327719364 cites W3049648685 @default.
- W4327719364 cites W3083247931 @default.
- W4327719364 cites W3102476541 @default.
- W4327719364 cites W3104598716 @default.
- W4327719364 cites W3112134271 @default.
- W4327719364 cites W3112169905 @default.
- W4327719364 cites W3131099950 @default.
- W4327719364 cites W3133294546 @default.
- W4327719364 cites W3137125108 @default.
- W4327719364 cites W3180679089 @default.
- W4327719364 cites W3200951484 @default.
- W4327719364 cites W3209174409 @default.
- W4327719364 cites W3210171426 @default.
- W4327719364 cites W4200114668 @default.
- W4327719364 cites W4200446026 @default.
- W4327719364 cites W4211225168 @default.
- W4327719364 cites W4221095965 @default.
- W4327719364 cites W4283384120 @default.
- W4327719364 cites W4284690057 @default.
- W4327719364 cites W4291274998 @default.
- W4327719364 cites W770634288 @default.
- W4327719364 doi "https://doi.org/10.1029/2022ef003083" @default.
- W4327719364 hasPublicationYear "2023" @default.
- W4327719364 type Work @default.
- W4327719364 citedByCount "0" @default.
- W4327719364 crossrefType "journal-article" @default.
- W4327719364 hasAuthorship W4327719364A5002934453 @default.
- W4327719364 hasAuthorship W4327719364A5004653709 @default.
- W4327719364 hasAuthorship W4327719364A5046309576 @default.
- W4327719364 hasAuthorship W4327719364A5082520943 @default.
- W4327719364 hasAuthorship W4327719364A5090734936 @default.
- W4327719364 hasBestOaLocation W43277193641 @default.
- W4327719364 hasConcept C119857082 @default.
- W4327719364 hasConcept C127413603 @default.
- W4327719364 hasConcept C131675550 @default.
- W4327719364 hasConcept C134560507 @default.
- W4327719364 hasConcept C139719470 @default.
- W4327719364 hasConcept C147176958 @default.
- W4327719364 hasConcept C162324750 @default.
- W4327719364 hasConcept C18903297 @default.
- W4327719364 hasConcept C204983608 @default.
- W4327719364 hasConcept C41008148 @default.
- W4327719364 hasConcept C4792198 @default.
- W4327719364 hasConcept C66204764 @default.
- W4327719364 hasConcept C86803240 @default.
- W4327719364 hasConceptScore W4327719364C119857082 @default.
- W4327719364 hasConceptScore W4327719364C127413603 @default.
- W4327719364 hasConceptScore W4327719364C131675550 @default.
- W4327719364 hasConceptScore W4327719364C134560507 @default.
- W4327719364 hasConceptScore W4327719364C139719470 @default.
- W4327719364 hasConceptScore W4327719364C147176958 @default.
- W4327719364 hasConceptScore W4327719364C162324750 @default.
- W4327719364 hasConceptScore W4327719364C18903297 @default.
- W4327719364 hasConceptScore W4327719364C204983608 @default.
- W4327719364 hasConceptScore W4327719364C41008148 @default.