Matches in SemOpenAlex for { <https://semopenalex.org/work/W4327719928> ?p ?o ?g. }
- W4327719928 endingPage "162930" @default.
- W4327719928 startingPage "162930" @default.
- W4327719928 abstract "High-frequency stream nitrate concentration provides critical insights into nutrient dynamics and can help to improve the effectiveness of management decisions to maintain a sustainable ecosystem. However, nitrate monitoring is conventionally conducted through lab analysis using in situ water samples and is typically at coarse temporal resolution. In the last decade, many agencies started collecting high-frequency (5–60 min intervals) nitrate data using optical sensors. The hypothesis of the study is that the data-driven models can learn the trend and temporal variability in nitrate concentration from high-frequency sensor-based nitrate data in the region and generate continuous nitrate data for unavailable data periods and data-limited locations. A Long Short-Term Memory (LSTM) model-based framework was developed to estimate continuous daily stream nitrate for dozens of gauge locations in Iowa, USA. The promising results supported the hypothesis; the LSTM model demonstrated median test-period Nash-Sutcliffe efficiency (NSE) = 0.75 and RMSE = 1.53 mg/L for estimating continuous daily nitrate concentration in 42 sites, which are unprecedented performance levels. Twenty-one sites (50 % of all sites) and thirty-four sites (76 % of all sites) demonstrated NSE > 0.75 and 0.50, respectively. The average nitrate concentration of neighboring sites was identified as a crucial determinant of continuous daily nitrate concentration. Seasonal model performance evaluation showed that the model performed effectively in the summer and fall seasons. About 26 sites showed correlations >0.60 between estimated nitrate concentration and discharge. The concentration-discharge (c-Q) relationship analysis showed that the study watersheds had four dominant nitrate transport patterns from landscapes to streams with increasing discharge, including the flushing pattern being the most dominant one. Stream nitrate estimation impedes due to data inadequacy. The modeling framework can be used to generate temporally continuous nitrate at nitrate data-limited regions with a nearby sensor-based nitrate gauge. Watershed planners and policymakers could utilize the continuous nitrate data to gain more information on the regional nitrate status and design conservation practices accordingly." @default.
- W4327719928 created "2023-03-18" @default.
- W4327719928 creator A5023554723 @default.
- W4327719928 creator A5027475930 @default.
- W4327719928 creator A5067105881 @default.
- W4327719928 creator A5074580455 @default.
- W4327719928 creator A5013777939 @default.
- W4327719928 date "2023-06-01" @default.
- W4327719928 modified "2023-09-28" @default.
- W4327719928 title "A deep learning-based novel approach to generate continuous daily stream nitrate concentration for nitrate data-sparse watersheds" @default.
- W4327719928 cites W1660213354 @default.
- W4327719928 cites W1898223643 @default.
- W4327719928 cites W2023598476 @default.
- W4327719928 cites W2030686678 @default.
- W4327719928 cites W2033904036 @default.
- W4327719928 cites W2046453991 @default.
- W4327719928 cites W2049587743 @default.
- W4327719928 cites W2058998445 @default.
- W4327719928 cites W2059646894 @default.
- W4327719928 cites W2064675550 @default.
- W4327719928 cites W2066580833 @default.
- W4327719928 cites W2071923692 @default.
- W4327719928 cites W2081553277 @default.
- W4327719928 cites W2083313133 @default.
- W4327719928 cites W2096274953 @default.
- W4327719928 cites W2129207889 @default.
- W4327719928 cites W2138763184 @default.
- W4327719928 cites W2164338383 @default.
- W4327719928 cites W2182119457 @default.
- W4327719928 cites W2328399833 @default.
- W4327719928 cites W2521442492 @default.
- W4327719928 cites W2564973095 @default.
- W4327719928 cites W2576589933 @default.
- W4327719928 cites W2580168271 @default.
- W4327719928 cites W2582343773 @default.
- W4327719928 cites W2621614687 @default.
- W4327719928 cites W2737654751 @default.
- W4327719928 cites W2749553994 @default.
- W4327719928 cites W2779086432 @default.
- W4327719928 cites W2800819102 @default.
- W4327719928 cites W2806600423 @default.
- W4327719928 cites W2891318841 @default.
- W4327719928 cites W2896500956 @default.
- W4327719928 cites W2938681590 @default.
- W4327719928 cites W2971813578 @default.
- W4327719928 cites W3011861953 @default.
- W4327719928 cites W3017072892 @default.
- W4327719928 cites W3034385753 @default.
- W4327719928 cites W3036522284 @default.
- W4327719928 cites W3037574654 @default.
- W4327719928 cites W3052102617 @default.
- W4327719928 cites W3097683816 @default.
- W4327719928 cites W3099909056 @default.
- W4327719928 cites W3106370744 @default.
- W4327719928 cites W3108675514 @default.
- W4327719928 cites W3109884002 @default.
- W4327719928 cites W3116368462 @default.
- W4327719928 cites W3125807057 @default.
- W4327719928 cites W3127852590 @default.
- W4327719928 cites W3128444610 @default.
- W4327719928 cites W3140862400 @default.
- W4327719928 cites W3164913159 @default.
- W4327719928 cites W3190367846 @default.
- W4327719928 cites W4210831498 @default.
- W4327719928 cites W976499782 @default.
- W4327719928 doi "https://doi.org/10.1016/j.scitotenv.2023.162930" @default.
- W4327719928 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36934914" @default.
- W4327719928 hasPublicationYear "2023" @default.
- W4327719928 type Work @default.
- W4327719928 citedByCount "3" @default.
- W4327719928 countsByYear W43277199282023 @default.
- W4327719928 crossrefType "journal-article" @default.
- W4327719928 hasAuthorship W4327719928A5013777939 @default.
- W4327719928 hasAuthorship W4327719928A5023554723 @default.
- W4327719928 hasAuthorship W4327719928A5027475930 @default.
- W4327719928 hasAuthorship W4327719928A5067105881 @default.
- W4327719928 hasAuthorship W4327719928A5074580455 @default.
- W4327719928 hasConcept C110872660 @default.
- W4327719928 hasConcept C119666444 @default.
- W4327719928 hasConcept C121332964 @default.
- W4327719928 hasConcept C127413603 @default.
- W4327719928 hasConcept C187320778 @default.
- W4327719928 hasConcept C18903297 @default.
- W4327719928 hasConcept C2776384668 @default.
- W4327719928 hasConcept C39432304 @default.
- W4327719928 hasConcept C62520636 @default.
- W4327719928 hasConcept C76886044 @default.
- W4327719928 hasConcept C86803240 @default.
- W4327719928 hasConceptScore W4327719928C110872660 @default.
- W4327719928 hasConceptScore W4327719928C119666444 @default.
- W4327719928 hasConceptScore W4327719928C121332964 @default.
- W4327719928 hasConceptScore W4327719928C127413603 @default.
- W4327719928 hasConceptScore W4327719928C187320778 @default.
- W4327719928 hasConceptScore W4327719928C18903297 @default.
- W4327719928 hasConceptScore W4327719928C2776384668 @default.
- W4327719928 hasConceptScore W4327719928C39432304 @default.
- W4327719928 hasConceptScore W4327719928C62520636 @default.
- W4327719928 hasConceptScore W4327719928C76886044 @default.