Matches in SemOpenAlex for { <https://semopenalex.org/work/W4327736603> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4327736603 endingPage "1417" @default.
- W4327736603 startingPage "1417" @default.
- W4327736603 abstract "There are many techniques for faking videos that can alter the face in a video to look like another person. This type of fake video has caused a number of information security crises. Many deep learning-based detection methods have been developed for these forgery methods. These detection methods require a large amount of training data and thus cannot develop detectors quickly when new forgery methods emerge. In addition, traditional forgery detection refers to a classifier that outputs real or fake versions of the input images. If the detector can output a prediction of the fake area, i.e., a segmentation version of forgery detection, it will be a great help for forensic work. Thus, in this paper, we propose a GAN-based deep learning approach that allows detection of forged regions using a smaller number of training samples. The generator part of the proposed architecture is used to synthesize predicted segmentation which indicates the fakeness of each pixel. To solve the classification problem, a threshold on the percentage of fake pixels is used to decide whether the input image is fake. For detecting fake videos, frames of the video are extracted and it is detected whether they are fake. If the percentage of fake frames is higher than a given threshold, the video is classified as fake. Compared with other papers, the experimental results show that our method has better classification and segmentation." @default.
- W4327736603 created "2023-03-18" @default.
- W4327736603 creator A5057151958 @default.
- W4327736603 creator A5069386516 @default.
- W4327736603 date "2023-03-16" @default.
- W4327736603 modified "2023-09-27" @default.
- W4327736603 title "Few-Shot Training GAN for Face Forgery Classification and Segmentation Based on the Fine-Tune Approach" @default.
- W4327736603 cites W1993996076 @default.
- W4327736603 cites W2054754893 @default.
- W4327736603 cites W2301937176 @default.
- W4327736603 cites W2412509443 @default.
- W4327736603 cites W2560311620 @default.
- W4327736603 cites W2603123944 @default.
- W4327736603 cites W2738406145 @default.
- W4327736603 cites W2786289897 @default.
- W4327736603 cites W2891145043 @default.
- W4327736603 cites W2902962850 @default.
- W4327736603 cites W3034713808 @default.
- W4327736603 cites W3083246145 @default.
- W4327736603 cites W3164956625 @default.
- W4327736603 cites W3192915988 @default.
- W4327736603 cites W4293248242 @default.
- W4327736603 cites W4312388562 @default.
- W4327736603 cites W4312753047 @default.
- W4327736603 doi "https://doi.org/10.3390/electronics12061417" @default.
- W4327736603 hasPublicationYear "2023" @default.
- W4327736603 type Work @default.
- W4327736603 citedByCount "0" @default.
- W4327736603 crossrefType "journal-article" @default.
- W4327736603 hasAuthorship W4327736603A5057151958 @default.
- W4327736603 hasAuthorship W4327736603A5069386516 @default.
- W4327736603 hasBestOaLocation W43277366031 @default.
- W4327736603 hasConcept C124504099 @default.
- W4327736603 hasConcept C144024400 @default.
- W4327736603 hasConcept C153180895 @default.
- W4327736603 hasConcept C154945302 @default.
- W4327736603 hasConcept C160633673 @default.
- W4327736603 hasConcept C178790620 @default.
- W4327736603 hasConcept C185592680 @default.
- W4327736603 hasConcept C2778344882 @default.
- W4327736603 hasConcept C2779304628 @default.
- W4327736603 hasConcept C31510193 @default.
- W4327736603 hasConcept C31972630 @default.
- W4327736603 hasConcept C36289849 @default.
- W4327736603 hasConcept C41008148 @default.
- W4327736603 hasConcept C4641261 @default.
- W4327736603 hasConcept C76155785 @default.
- W4327736603 hasConcept C89600930 @default.
- W4327736603 hasConcept C94915269 @default.
- W4327736603 hasConcept C95623464 @default.
- W4327736603 hasConceptScore W4327736603C124504099 @default.
- W4327736603 hasConceptScore W4327736603C144024400 @default.
- W4327736603 hasConceptScore W4327736603C153180895 @default.
- W4327736603 hasConceptScore W4327736603C154945302 @default.
- W4327736603 hasConceptScore W4327736603C160633673 @default.
- W4327736603 hasConceptScore W4327736603C178790620 @default.
- W4327736603 hasConceptScore W4327736603C185592680 @default.
- W4327736603 hasConceptScore W4327736603C2778344882 @default.
- W4327736603 hasConceptScore W4327736603C2779304628 @default.
- W4327736603 hasConceptScore W4327736603C31510193 @default.
- W4327736603 hasConceptScore W4327736603C31972630 @default.
- W4327736603 hasConceptScore W4327736603C36289849 @default.
- W4327736603 hasConceptScore W4327736603C41008148 @default.
- W4327736603 hasConceptScore W4327736603C4641261 @default.
- W4327736603 hasConceptScore W4327736603C76155785 @default.
- W4327736603 hasConceptScore W4327736603C89600930 @default.
- W4327736603 hasConceptScore W4327736603C94915269 @default.
- W4327736603 hasConceptScore W4327736603C95623464 @default.
- W4327736603 hasIssue "6" @default.
- W4327736603 hasLocation W43277366031 @default.
- W4327736603 hasOpenAccess W4327736603 @default.
- W4327736603 hasPrimaryLocation W43277366031 @default.
- W4327736603 hasRelatedWork W1966950629 @default.
- W4327736603 hasRelatedWork W2136485282 @default.
- W4327736603 hasRelatedWork W2150574012 @default.
- W4327736603 hasRelatedWork W2347601237 @default.
- W4327736603 hasRelatedWork W2546871836 @default.
- W4327736603 hasRelatedWork W2786119473 @default.
- W4327736603 hasRelatedWork W2897995864 @default.
- W4327736603 hasRelatedWork W2908959303 @default.
- W4327736603 hasRelatedWork W4385451382 @default.
- W4327736603 hasRelatedWork W3158004940 @default.
- W4327736603 hasVolume "12" @default.
- W4327736603 isParatext "false" @default.
- W4327736603 isRetracted "false" @default.
- W4327736603 workType "article" @default.