Matches in SemOpenAlex for { <https://semopenalex.org/work/W4327736618> ?p ?o ?g. }
- W4327736618 endingPage "3176" @default.
- W4327736618 startingPage "3176" @default.
- W4327736618 abstract "Deep learning has achieved remarkably positive results and impacts on medical diagnostics in recent years. Due to its use in several proposals, deep learning has reached sufficient accuracy to implement; however, the algorithms are black boxes that are hard to understand, and model decisions are often made without reason or explanation. To reduce this gap, explainable artificial intelligence (XAI) offers a huge opportunity to receive informed decision support from deep learning models and opens the black box of the method. We conducted an explainable deep learning method based on ResNet152 combined with Grad–CAM for endoscopy image classification. We used an open-source KVASIR dataset that consisted of a total of 8000 wireless capsule images. The heat map of the classification results and an efficient augmentation method achieved a high positive result with 98.28% training and 93.46% validation accuracy in terms of medical image classification." @default.
- W4327736618 created "2023-03-18" @default.
- W4327736618 creator A5020927844 @default.
- W4327736618 creator A5023896107 @default.
- W4327736618 creator A5038621281 @default.
- W4327736618 creator A5084153433 @default.
- W4327736618 date "2023-03-16" @default.
- W4327736618 modified "2023-10-10" @default.
- W4327736618 title "Endoscopic Image Classification Based on Explainable Deep Learning" @default.
- W4327736618 cites W1586903776 @default.
- W4327736618 cites W2194775991 @default.
- W4327736618 cites W2493683088 @default.
- W4327736618 cites W2533800772 @default.
- W4327736618 cites W2560322684 @default.
- W4327736618 cites W2765095566 @default.
- W4327736618 cites W2780830043 @default.
- W4327736618 cites W2783201053 @default.
- W4327736618 cites W2791942584 @default.
- W4327736618 cites W2801817702 @default.
- W4327736618 cites W2921231121 @default.
- W4327736618 cites W2939071985 @default.
- W4327736618 cites W2959707910 @default.
- W4327736618 cites W2961308354 @default.
- W4327736618 cites W2962858109 @default.
- W4327736618 cites W2963163009 @default.
- W4327736618 cites W2963446712 @default.
- W4327736618 cites W2963589681 @default.
- W4327736618 cites W2991564522 @default.
- W4327736618 cites W2999842456 @default.
- W4327736618 cites W3010846872 @default.
- W4327736618 cites W3035253074 @default.
- W4327736618 cites W3044003250 @default.
- W4327736618 cites W3046238651 @default.
- W4327736618 cites W3082604781 @default.
- W4327736618 cites W3095556657 @default.
- W4327736618 cites W3120091839 @default.
- W4327736618 cites W3127403190 @default.
- W4327736618 cites W3129544296 @default.
- W4327736618 cites W3166176762 @default.
- W4327736618 cites W3176482836 @default.
- W4327736618 cites W3179460902 @default.
- W4327736618 cites W3199123638 @default.
- W4327736618 cites W3212159646 @default.
- W4327736618 cites W3214185682 @default.
- W4327736618 cites W3217175436 @default.
- W4327736618 cites W4200306963 @default.
- W4327736618 cites W4206135833 @default.
- W4327736618 cites W4206644103 @default.
- W4327736618 cites W4206799607 @default.
- W4327736618 cites W4221111998 @default.
- W4327736618 cites W4221123835 @default.
- W4327736618 cites W4224224887 @default.
- W4327736618 cites W4251343507 @default.
- W4327736618 cites W4281643310 @default.
- W4327736618 cites W4282917562 @default.
- W4327736618 cites W4283817370 @default.
- W4327736618 cites W4289102307 @default.
- W4327736618 cites W4289110633 @default.
- W4327736618 cites W4293812401 @default.
- W4327736618 cites W4295865389 @default.
- W4327736618 cites W4296004432 @default.
- W4327736618 cites W4296807848 @default.
- W4327736618 doi "https://doi.org/10.3390/s23063176" @default.
- W4327736618 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36991887" @default.
- W4327736618 hasPublicationYear "2023" @default.
- W4327736618 type Work @default.
- W4327736618 citedByCount "3" @default.
- W4327736618 countsByYear W43277366182023 @default.
- W4327736618 crossrefType "journal-article" @default.
- W4327736618 hasAuthorship W4327736618A5020927844 @default.
- W4327736618 hasAuthorship W4327736618A5023896107 @default.
- W4327736618 hasAuthorship W4327736618A5038621281 @default.
- W4327736618 hasAuthorship W4327736618A5084153433 @default.
- W4327736618 hasBestOaLocation W43277366181 @default.
- W4327736618 hasConcept C108583219 @default.
- W4327736618 hasConcept C115961682 @default.
- W4327736618 hasConcept C119857082 @default.
- W4327736618 hasConcept C126838900 @default.
- W4327736618 hasConcept C154945302 @default.
- W4327736618 hasConcept C2777333622 @default.
- W4327736618 hasConcept C41008148 @default.
- W4327736618 hasConcept C71924100 @default.
- W4327736618 hasConcept C75294576 @default.
- W4327736618 hasConcept C94966114 @default.
- W4327736618 hasConceptScore W4327736618C108583219 @default.
- W4327736618 hasConceptScore W4327736618C115961682 @default.
- W4327736618 hasConceptScore W4327736618C119857082 @default.
- W4327736618 hasConceptScore W4327736618C126838900 @default.
- W4327736618 hasConceptScore W4327736618C154945302 @default.
- W4327736618 hasConceptScore W4327736618C2777333622 @default.
- W4327736618 hasConceptScore W4327736618C41008148 @default.
- W4327736618 hasConceptScore W4327736618C71924100 @default.
- W4327736618 hasConceptScore W4327736618C75294576 @default.
- W4327736618 hasConceptScore W4327736618C94966114 @default.
- W4327736618 hasIssue "6" @default.
- W4327736618 hasLocation W43277366181 @default.
- W4327736618 hasLocation W43277366182 @default.
- W4327736618 hasLocation W43277366183 @default.