Matches in SemOpenAlex for { <https://semopenalex.org/work/W4327737692> ?p ?o ?g. }
- W4327737692 endingPage "5724" @default.
- W4327737692 startingPage "5724" @default.
- W4327737692 abstract "Monoclonal antibodies are biopharmaceuticals with a very long half-life due to the binding of their Fc portion to the neonatal receptor (FcRn), a pharmacokinetic property that can be further improved through engineering of the Fc portion, as demonstrated by the approval of several new drugs. Many Fc variants with increased binding to FcRn have been found using different methods, such as structure-guided design, random mutagenesis, or a combination of both, and are described in the literature as well as in patents. Our hypothesis is that this material could be subjected to a machine learning approach in order to generate new variants with similar properties. We therefore compiled 1323 Fc variants affecting the affinity for FcRn, which were disclosed in twenty patents. These data were used to train several algorithms, with two different models, in order to predict the affinity for FcRn of new randomly generated Fc variants. To determine which algorithm was the most robust, we first assessed the correlation between measured and predicted affinity in a 10-fold cross-validation test. We then generated variants by in silico random mutagenesis and compared the prediction made by the different algorithms. As a final validation, we produced variants, not described in any patents, and compared the predicted affinity with the experimental binding affinities measured by surface plasmon resonance (SPR). The best mean absolute error (MAE) between predicted and experimental values was obtained with a support vector regressor (SVR) using six features and trained on 1251 examples. With this setting, the error on the log(KD) was less than 0.17. The obtained results show that such an approach could be used to find new variants with better half-life properties that are different from those already extensively used in therapeutic antibody development." @default.
- W4327737692 created "2023-03-18" @default.
- W4327737692 creator A5011831250 @default.
- W4327737692 creator A5014067412 @default.
- W4327737692 creator A5037499586 @default.
- W4327737692 creator A5038763634 @default.
- W4327737692 creator A5056684035 @default.
- W4327737692 creator A5077825698 @default.
- W4327737692 date "2023-03-16" @default.
- W4327737692 modified "2023-09-27" @default.
- W4327737692 title "Harnessing Fc/FcRn Affinity Data from Patents with Different Machine Learning Methods" @default.
- W4327737692 cites W1529809181 @default.
- W4327737692 cites W1547437295 @default.
- W4327737692 cites W1973426761 @default.
- W4327737692 cites W1979162895 @default.
- W4327737692 cites W1996045402 @default.
- W4327737692 cites W2023490488 @default.
- W4327737692 cites W2036408874 @default.
- W4327737692 cites W2051724555 @default.
- W4327737692 cites W2072958011 @default.
- W4327737692 cites W2092387745 @default.
- W4327737692 cites W2093117233 @default.
- W4327737692 cites W2099381753 @default.
- W4327737692 cites W2099471962 @default.
- W4327737692 cites W2110720709 @default.
- W4327737692 cites W2119562248 @default.
- W4327737692 cites W2128332459 @default.
- W4327737692 cites W2129454543 @default.
- W4327737692 cites W2159515958 @default.
- W4327737692 cites W2165948287 @default.
- W4327737692 cites W2169656611 @default.
- W4327737692 cites W2227084739 @default.
- W4327737692 cites W2244501064 @default.
- W4327737692 cites W2257874595 @default.
- W4327737692 cites W2554019130 @default.
- W4327737692 cites W2606721249 @default.
- W4327737692 cites W2811304917 @default.
- W4327737692 cites W2888528653 @default.
- W4327737692 cites W2891177993 @default.
- W4327737692 cites W2951311588 @default.
- W4327737692 cites W2976285377 @default.
- W4327737692 cites W2980017834 @default.
- W4327737692 cites W4293000974 @default.
- W4327737692 doi "https://doi.org/10.3390/ijms24065724" @default.
- W4327737692 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36982796" @default.
- W4327737692 hasPublicationYear "2023" @default.
- W4327737692 type Work @default.
- W4327737692 citedByCount "0" @default.
- W4327737692 crossrefType "journal-article" @default.
- W4327737692 hasAuthorship W4327737692A5011831250 @default.
- W4327737692 hasAuthorship W4327737692A5014067412 @default.
- W4327737692 hasAuthorship W4327737692A5037499586 @default.
- W4327737692 hasAuthorship W4327737692A5038763634 @default.
- W4327737692 hasAuthorship W4327737692A5056684035 @default.
- W4327737692 hasAuthorship W4327737692A5077825698 @default.
- W4327737692 hasBestOaLocation W43277376921 @default.
- W4327737692 hasConcept C104317684 @default.
- W4327737692 hasConcept C106847996 @default.
- W4327737692 hasConcept C119857082 @default.
- W4327737692 hasConcept C12267149 @default.
- W4327737692 hasConcept C154945302 @default.
- W4327737692 hasConcept C155672457 @default.
- W4327737692 hasConcept C159654299 @default.
- W4327737692 hasConcept C16318435 @default.
- W4327737692 hasConcept C170493617 @default.
- W4327737692 hasConcept C171250308 @default.
- W4327737692 hasConcept C185592680 @default.
- W4327737692 hasConcept C192562407 @default.
- W4327737692 hasConcept C2775905019 @default.
- W4327737692 hasConcept C2780283098 @default.
- W4327737692 hasConcept C2780649865 @default.
- W4327737692 hasConcept C2780898057 @default.
- W4327737692 hasConcept C3018795828 @default.
- W4327737692 hasConcept C41008148 @default.
- W4327737692 hasConcept C501734568 @default.
- W4327737692 hasConcept C54355233 @default.
- W4327737692 hasConcept C55493867 @default.
- W4327737692 hasConcept C70721500 @default.
- W4327737692 hasConcept C86803240 @default.
- W4327737692 hasConceptScore W4327737692C104317684 @default.
- W4327737692 hasConceptScore W4327737692C106847996 @default.
- W4327737692 hasConceptScore W4327737692C119857082 @default.
- W4327737692 hasConceptScore W4327737692C12267149 @default.
- W4327737692 hasConceptScore W4327737692C154945302 @default.
- W4327737692 hasConceptScore W4327737692C155672457 @default.
- W4327737692 hasConceptScore W4327737692C159654299 @default.
- W4327737692 hasConceptScore W4327737692C16318435 @default.
- W4327737692 hasConceptScore W4327737692C170493617 @default.
- W4327737692 hasConceptScore W4327737692C171250308 @default.
- W4327737692 hasConceptScore W4327737692C185592680 @default.
- W4327737692 hasConceptScore W4327737692C192562407 @default.
- W4327737692 hasConceptScore W4327737692C2775905019 @default.
- W4327737692 hasConceptScore W4327737692C2780283098 @default.
- W4327737692 hasConceptScore W4327737692C2780649865 @default.
- W4327737692 hasConceptScore W4327737692C2780898057 @default.
- W4327737692 hasConceptScore W4327737692C3018795828 @default.
- W4327737692 hasConceptScore W4327737692C41008148 @default.
- W4327737692 hasConceptScore W4327737692C501734568 @default.