Matches in SemOpenAlex for { <https://semopenalex.org/work/W4327738419> ?p ?o ?g. }
- W4327738419 endingPage "3808" @default.
- W4327738419 startingPage "3808" @default.
- W4327738419 abstract "Artificial intelligence (AI) is one of the most promising approaches to health innovation. The use of AI in image recognition considerably extends findings beyond the constraints of human sight. The application of AI in medical imaging, which relies on picture interpretation, is beneficial for automatic diagnosis. Diagnostic radiology is evolving from a subjective perceptual talent to a more objective science thanks to AI. Automatic object detection in medical images is an essential AI technology in medicine. The problem of detecting brain tumors at an early stage is well advanced with convolutional neural network (CNN) and deep learning algorithms (DLA). The problem is that those algorithms require a training phase with a big database of more than 500 images and time-consuming with a complex computational and expensive infrastructure. This study proposes a classical automatic segmentation method for detecting brain tumors in the early stage using MRI images. It is based on a multilevel thresholding technique on a harmony search algorithm (HSO); the algorithm was developed to suit MRI brain segmentation, and parameters selection was optimized for the purpose. Multiple thresholds, based on the variance and entropy functions, break the histogram into multiple portions, and different colors are associated with each portion. To eliminate the tiny arias supposed as noise and detect brain tumors, morphological operations followed by a connected component analysis are utilized after segmentation. The brain tumor detection performance is judged using performance parameters such as Accuracy, Dice Coefficient, and Jaccard index. The results are compared to those acquired manually by experts in the field. The results were further compared with different CNN and DLA approaches using Brain Images dataset called the “BraTS 2017 challenge”. The average Dice Index was used as a performance measure for the comparison. The results of the proposed approach were found to be competitive in accuracy to those obtained by CNN and DLA methods and much better in terms of execution time, computational complexity, and data management." @default.
- W4327738419 created "2023-03-18" @default.
- W4327738419 creator A5008461974 @default.
- W4327738419 creator A5058470902 @default.
- W4327738419 creator A5078223151 @default.
- W4327738419 creator A5087280164 @default.
- W4327738419 creator A5088371401 @default.
- W4327738419 creator A5089736793 @default.
- W4327738419 date "2023-03-16" @default.
- W4327738419 modified "2023-09-30" @default.
- W4327738419 title "Artificial Intelligence Approach for Early Detection of Brain Tumors Using MRI Images" @default.
- W4327738419 cites W1641498739 @default.
- W4327738419 cites W1909740415 @default.
- W4327738419 cites W2003012800 @default.
- W4327738419 cites W2006012053 @default.
- W4327738419 cites W2016811056 @default.
- W4327738419 cites W2051554863 @default.
- W4327738419 cites W2054131729 @default.
- W4327738419 cites W2077110530 @default.
- W4327738419 cites W2083970667 @default.
- W4327738419 cites W2106235379 @default.
- W4327738419 cites W2133059825 @default.
- W4327738419 cites W2508032853 @default.
- W4327738419 cites W2751069891 @default.
- W4327738419 cites W2767789914 @default.
- W4327738419 cites W2907398861 @default.
- W4327738419 cites W2964356628 @default.
- W4327738419 cites W3015395776 @default.
- W4327738419 cites W3019504237 @default.
- W4327738419 cites W3133158957 @default.
- W4327738419 cites W3173182123 @default.
- W4327738419 cites W3185776322 @default.
- W4327738419 cites W3193211895 @default.
- W4327738419 cites W4200315031 @default.
- W4327738419 cites W4200514344 @default.
- W4327738419 cites W4281572218 @default.
- W4327738419 cites W4309467252 @default.
- W4327738419 doi "https://doi.org/10.3390/app13063808" @default.
- W4327738419 hasPublicationYear "2023" @default.
- W4327738419 type Work @default.
- W4327738419 citedByCount "1" @default.
- W4327738419 countsByYear W43277384192023 @default.
- W4327738419 crossrefType "journal-article" @default.
- W4327738419 hasAuthorship W4327738419A5008461974 @default.
- W4327738419 hasAuthorship W4327738419A5058470902 @default.
- W4327738419 hasAuthorship W4327738419A5078223151 @default.
- W4327738419 hasAuthorship W4327738419A5087280164 @default.
- W4327738419 hasAuthorship W4327738419A5088371401 @default.
- W4327738419 hasAuthorship W4327738419A5089736793 @default.
- W4327738419 hasBestOaLocation W43277384191 @default.
- W4327738419 hasConcept C108583219 @default.
- W4327738419 hasConcept C115961682 @default.
- W4327738419 hasConcept C124504099 @default.
- W4327738419 hasConcept C153180895 @default.
- W4327738419 hasConcept C154945302 @default.
- W4327738419 hasConcept C163892561 @default.
- W4327738419 hasConcept C191178318 @default.
- W4327738419 hasConcept C203519979 @default.
- W4327738419 hasConcept C22029948 @default.
- W4327738419 hasConcept C2524010 @default.
- W4327738419 hasConcept C31601959 @default.
- W4327738419 hasConcept C31972630 @default.
- W4327738419 hasConcept C33923547 @default.
- W4327738419 hasConcept C41008148 @default.
- W4327738419 hasConcept C53533937 @default.
- W4327738419 hasConcept C81363708 @default.
- W4327738419 hasConcept C89600930 @default.
- W4327738419 hasConceptScore W4327738419C108583219 @default.
- W4327738419 hasConceptScore W4327738419C115961682 @default.
- W4327738419 hasConceptScore W4327738419C124504099 @default.
- W4327738419 hasConceptScore W4327738419C153180895 @default.
- W4327738419 hasConceptScore W4327738419C154945302 @default.
- W4327738419 hasConceptScore W4327738419C163892561 @default.
- W4327738419 hasConceptScore W4327738419C191178318 @default.
- W4327738419 hasConceptScore W4327738419C203519979 @default.
- W4327738419 hasConceptScore W4327738419C22029948 @default.
- W4327738419 hasConceptScore W4327738419C2524010 @default.
- W4327738419 hasConceptScore W4327738419C31601959 @default.
- W4327738419 hasConceptScore W4327738419C31972630 @default.
- W4327738419 hasConceptScore W4327738419C33923547 @default.
- W4327738419 hasConceptScore W4327738419C41008148 @default.
- W4327738419 hasConceptScore W4327738419C53533937 @default.
- W4327738419 hasConceptScore W4327738419C81363708 @default.
- W4327738419 hasConceptScore W4327738419C89600930 @default.
- W4327738419 hasFunder F4320321145 @default.
- W4327738419 hasIssue "6" @default.
- W4327738419 hasLocation W43277384191 @default.
- W4327738419 hasOpenAccess W4327738419 @default.
- W4327738419 hasPrimaryLocation W43277384191 @default.
- W4327738419 hasRelatedWork W2411367154 @default.
- W4327738419 hasRelatedWork W2969790209 @default.
- W4327738419 hasRelatedWork W2999580839 @default.
- W4327738419 hasRelatedWork W3093926553 @default.
- W4327738419 hasRelatedWork W3116883888 @default.
- W4327738419 hasRelatedWork W3118494652 @default.
- W4327738419 hasRelatedWork W3120092106 @default.
- W4327738419 hasRelatedWork W3135324209 @default.
- W4327738419 hasRelatedWork W4287631720 @default.