Matches in SemOpenAlex for { <https://semopenalex.org/work/W4327747413> ?p ?o ?g. }
- W4327747413 endingPage "110" @default.
- W4327747413 startingPage "89" @default.
- W4327747413 abstract "Significant population growth and ongoing socioeconomic development have increased reliance on irrigated agriculture and agricultural intensification. However, accurately predicting crop water demand is problematic since it is affected by several factors such as weather, soil, and water properties. Many studies have shown that a hybrid irrigation system based on two irrigation strategies (i.e., evapotranspiration and soil-based irrigation) can provide a credible and reliable irrigation system. The latter can also alert farmers and other experts to phenomena such as noise, erroneous sensor signals, numerous correlated input and target variables, and incomplete or missing data, especially when the two irrigation strategies produce inconsistent results. Hence, we propose Multi-Target soil moisture and evapotranspiration prediction (MTR-SMET) for estimating soil moisture and evapotranspiration. These predictions are then used to compute water needs based on Food and Agriculture Organization (FAO) and soil-based methods. Besides, we propose an explainable MTR-SMET (xMTR-SMET) that explains the ML-based irrigation to the farmers/users using several explainable AI to provide simple visual explanations for the given predictions. It is the first attempt that explains and offers meaningful insights into the output of a machine learning-based irrigation approach. The conducted experiments showed that the proposed MTR-SMET model achieves low error rates (i.e., MSE = 0.00015, RMSE = 0.0039, MAE = 0.002) and high R 2 score (i.e., 0.9676)." @default.
- W4327747413 created "2023-03-18" @default.
- W4327747413 creator A5040130171 @default.
- W4327747413 creator A5048062389 @default.
- W4327747413 creator A5088802690 @default.
- W4327747413 date "2023-03-27" @default.
- W4327747413 modified "2023-10-02" @default.
- W4327747413 title "Towards an explainable irrigation scheduling approach by predicting soil moisture and evapotranspiration via multi-target regression" @default.
- W4327747413 cites W1524416683 @default.
- W4327747413 cites W1550629956 @default.
- W4327747413 cites W1812453514 @default.
- W4327747413 cites W1972564314 @default.
- W4327747413 cites W1977886272 @default.
- W4327747413 cites W2145827727 @default.
- W4327747413 cites W2282821441 @default.
- W4327747413 cites W2325879942 @default.
- W4327747413 cites W2461098375 @default.
- W4327747413 cites W2887476216 @default.
- W4327747413 cites W2890354667 @default.
- W4327747413 cites W2896715775 @default.
- W4327747413 cites W2908043352 @default.
- W4327747413 cites W2911964244 @default.
- W4327747413 cites W2913080329 @default.
- W4327747413 cites W2980395987 @default.
- W4327747413 cites W2998301895 @default.
- W4327747413 cites W3010977907 @default.
- W4327747413 cites W3021046385 @default.
- W4327747413 cites W3098357169 @default.
- W4327747413 cites W3112409325 @default.
- W4327747413 cites W3159326073 @default.
- W4327747413 cites W3195326532 @default.
- W4327747413 cites W3200793697 @default.
- W4327747413 cites W4205556018 @default.
- W4327747413 cites W4239964029 @default.
- W4327747413 cites W4281785073 @default.
- W4327747413 cites W4285502578 @default.
- W4327747413 doi "https://doi.org/10.3233/ais-220477" @default.
- W4327747413 hasPublicationYear "2023" @default.
- W4327747413 type Work @default.
- W4327747413 citedByCount "1" @default.
- W4327747413 countsByYear W43277474132023 @default.
- W4327747413 crossrefType "journal-article" @default.
- W4327747413 hasAuthorship W4327747413A5040130171 @default.
- W4327747413 hasAuthorship W4327747413A5048062389 @default.
- W4327747413 hasAuthorship W4327747413A5088802690 @default.
- W4327747413 hasConcept C105795698 @default.
- W4327747413 hasConcept C118518473 @default.
- W4327747413 hasConcept C127313418 @default.
- W4327747413 hasConcept C127413603 @default.
- W4327747413 hasConcept C159390177 @default.
- W4327747413 hasConcept C159750122 @default.
- W4327747413 hasConcept C166957645 @default.
- W4327747413 hasConcept C176783924 @default.
- W4327747413 hasConcept C187320778 @default.
- W4327747413 hasConcept C18903297 @default.
- W4327747413 hasConcept C205649164 @default.
- W4327747413 hasConcept C24939127 @default.
- W4327747413 hasConcept C2777589951 @default.
- W4327747413 hasConcept C33923547 @default.
- W4327747413 hasConcept C39432304 @default.
- W4327747413 hasConcept C41008148 @default.
- W4327747413 hasConcept C6557445 @default.
- W4327747413 hasConcept C76886044 @default.
- W4327747413 hasConcept C83546350 @default.
- W4327747413 hasConcept C86803240 @default.
- W4327747413 hasConcept C88463610 @default.
- W4327747413 hasConcept C88862950 @default.
- W4327747413 hasConceptScore W4327747413C105795698 @default.
- W4327747413 hasConceptScore W4327747413C118518473 @default.
- W4327747413 hasConceptScore W4327747413C127313418 @default.
- W4327747413 hasConceptScore W4327747413C127413603 @default.
- W4327747413 hasConceptScore W4327747413C159390177 @default.
- W4327747413 hasConceptScore W4327747413C159750122 @default.
- W4327747413 hasConceptScore W4327747413C166957645 @default.
- W4327747413 hasConceptScore W4327747413C176783924 @default.
- W4327747413 hasConceptScore W4327747413C187320778 @default.
- W4327747413 hasConceptScore W4327747413C18903297 @default.
- W4327747413 hasConceptScore W4327747413C205649164 @default.
- W4327747413 hasConceptScore W4327747413C24939127 @default.
- W4327747413 hasConceptScore W4327747413C2777589951 @default.
- W4327747413 hasConceptScore W4327747413C33923547 @default.
- W4327747413 hasConceptScore W4327747413C39432304 @default.
- W4327747413 hasConceptScore W4327747413C41008148 @default.
- W4327747413 hasConceptScore W4327747413C6557445 @default.
- W4327747413 hasConceptScore W4327747413C76886044 @default.
- W4327747413 hasConceptScore W4327747413C83546350 @default.
- W4327747413 hasConceptScore W4327747413C86803240 @default.
- W4327747413 hasConceptScore W4327747413C88463610 @default.
- W4327747413 hasConceptScore W4327747413C88862950 @default.
- W4327747413 hasIssue "1" @default.
- W4327747413 hasLocation W43277474131 @default.
- W4327747413 hasOpenAccess W4327747413 @default.
- W4327747413 hasPrimaryLocation W43277474131 @default.
- W4327747413 hasRelatedWork W1550631708 @default.
- W4327747413 hasRelatedWork W2015616846 @default.
- W4327747413 hasRelatedWork W2033135935 @default.
- W4327747413 hasRelatedWork W2051292661 @default.
- W4327747413 hasRelatedWork W2124178367 @default.