Matches in SemOpenAlex for { <https://semopenalex.org/work/W4327748149> ?p ?o ?g. }
- W4327748149 endingPage "119882" @default.
- W4327748149 startingPage "119882" @default.
- W4327748149 abstract "Credit scoring is a crucial indicator for banks to determine the financial position and the eligibility of a client for credit. In order to assign statistical odds or probabilities to predict the risk of nonpayment in relation to many other factors, the scoring criterion becomes an important issue. The focus of this study is to propose a clustering based fuzzy classification (CBFC) method for credit risk assessment. We aim to illustrate the beneficial use of machine learning (ML) methods whose prediction power is increased by adopting fuzzy theory to calculate the default risk with a better selection of the features contributing to it. An important feature of the CBFC method is that membership values obtained as a result of the fuzzy k-means clustering algorithm are used for the purpose of better capturing the structure of an existing system. An extensive comparison is performed to show how CBFC performs compared to the traditional ones for the datasets having different characteristics in terms of the variable types. Five different real-life datasets are studied to expose the contribution of fuzzy approach on improving the ML use. Our findings show that the proposed CBFC models can produce the promising classification results in credit risk evaluation which aid the practitioners and decision makers for issuance of credit purposes." @default.
- W4327748149 created "2023-03-18" @default.
- W4327748149 creator A5052407070 @default.
- W4327748149 creator A5075677222 @default.
- W4327748149 creator A5078181082 @default.
- W4327748149 date "2023-08-01" @default.
- W4327748149 modified "2023-10-18" @default.
- W4327748149 title "Credit risk evaluation using clustering based fuzzy classification method" @default.
- W4327748149 cites W1560820185 @default.
- W4327748149 cites W1831050183 @default.
- W4327748149 cites W1963607983 @default.
- W4327748149 cites W1964074981 @default.
- W4327748149 cites W1978034686 @default.
- W4327748149 cites W1988497044 @default.
- W4327748149 cites W1991727071 @default.
- W4327748149 cites W1994085451 @default.
- W4327748149 cites W1995450389 @default.
- W4327748149 cites W2019461538 @default.
- W4327748149 cites W2029869759 @default.
- W4327748149 cites W2034561864 @default.
- W4327748149 cites W2052268454 @default.
- W4327748149 cites W2053677366 @default.
- W4327748149 cites W2074743521 @default.
- W4327748149 cites W2092770115 @default.
- W4327748149 cites W2099454382 @default.
- W4327748149 cites W2104804909 @default.
- W4327748149 cites W2131816657 @default.
- W4327748149 cites W2137959503 @default.
- W4327748149 cites W2146332392 @default.
- W4327748149 cites W2167360858 @default.
- W4327748149 cites W2168123127 @default.
- W4327748149 cites W2273893358 @default.
- W4327748149 cites W2430259680 @default.
- W4327748149 cites W2478859391 @default.
- W4327748149 cites W255433357 @default.
- W4327748149 cites W2556515000 @default.
- W4327748149 cites W2585717215 @default.
- W4327748149 cites W2761700016 @default.
- W4327748149 cites W2779409026 @default.
- W4327748149 cites W2783336591 @default.
- W4327748149 cites W2790843050 @default.
- W4327748149 cites W2885442465 @default.
- W4327748149 cites W2886014727 @default.
- W4327748149 cites W2891295587 @default.
- W4327748149 cites W2911964244 @default.
- W4327748149 cites W2923437336 @default.
- W4327748149 cites W2966139567 @default.
- W4327748149 cites W2981934270 @default.
- W4327748149 cites W3033559620 @default.
- W4327748149 cites W3035428572 @default.
- W4327748149 cites W3039307496 @default.
- W4327748149 cites W3040956604 @default.
- W4327748149 cites W3042455157 @default.
- W4327748149 cites W3046234331 @default.
- W4327748149 cites W3047459543 @default.
- W4327748149 cites W3084258740 @default.
- W4327748149 cites W3102476541 @default.
- W4327748149 cites W3112123599 @default.
- W4327748149 cites W3135286407 @default.
- W4327748149 cites W3183141613 @default.
- W4327748149 cites W3205154884 @default.
- W4327748149 cites W4206815626 @default.
- W4327748149 doi "https://doi.org/10.1016/j.eswa.2023.119882" @default.
- W4327748149 hasPublicationYear "2023" @default.
- W4327748149 type Work @default.
- W4327748149 citedByCount "2" @default.
- W4327748149 countsByYear W43277481492023 @default.
- W4327748149 crossrefType "journal-article" @default.
- W4327748149 hasAuthorship W4327748149A5052407070 @default.
- W4327748149 hasAuthorship W4327748149A5075677222 @default.
- W4327748149 hasAuthorship W4327748149A5078181082 @default.
- W4327748149 hasConcept C10138342 @default.
- W4327748149 hasConcept C119857082 @default.
- W4327748149 hasConcept C124101348 @default.
- W4327748149 hasConcept C134306372 @default.
- W4327748149 hasConcept C144133560 @default.
- W4327748149 hasConcept C148483581 @default.
- W4327748149 hasConcept C154945302 @default.
- W4327748149 hasConcept C17212007 @default.
- W4327748149 hasConcept C178350159 @default.
- W4327748149 hasConcept C182365436 @default.
- W4327748149 hasConcept C25343380 @default.
- W4327748149 hasConcept C33923547 @default.
- W4327748149 hasConcept C41008148 @default.
- W4327748149 hasConcept C58166 @default.
- W4327748149 hasConcept C73555534 @default.
- W4327748149 hasConceptScore W4327748149C10138342 @default.
- W4327748149 hasConceptScore W4327748149C119857082 @default.
- W4327748149 hasConceptScore W4327748149C124101348 @default.
- W4327748149 hasConceptScore W4327748149C134306372 @default.
- W4327748149 hasConceptScore W4327748149C144133560 @default.
- W4327748149 hasConceptScore W4327748149C148483581 @default.
- W4327748149 hasConceptScore W4327748149C154945302 @default.
- W4327748149 hasConceptScore W4327748149C17212007 @default.
- W4327748149 hasConceptScore W4327748149C178350159 @default.
- W4327748149 hasConceptScore W4327748149C182365436 @default.
- W4327748149 hasConceptScore W4327748149C25343380 @default.
- W4327748149 hasConceptScore W4327748149C33923547 @default.