Matches in SemOpenAlex for { <https://semopenalex.org/work/W4327757656> ?p ?o ?g. }
- W4327757656 endingPage "122504" @default.
- W4327757656 startingPage "122504" @default.
- W4327757656 abstract "Accurate forecasting of the air quality index (AQI) plays a crucial role in taking precautions against upcoming air pollution risks. However, air quality may fluctuate greatly in a certain period. Existing forecasting approaches always face the problem of losing valuable information on air quality status, even in the interval models of recent research. To address this issue, this paper suggests a new AQI forecasting perspective and paradigm built upon ternary interval-valued time series (TITS), multivariate variational mode decomposition (MVMD), multivariate relevance vector machine (MVRVM), mixed coding particle swarm optimization (MCPSO), and meteorological factors, which is able to capture the trend and volatility changes of AQI concurrently. The proposed paradigm involves four procedures: TITS construction in terms of the daily minimum, daily mean, and daily maximum AQI, multi-scale decomposition via MVMD, individual forecasting by MCPSO-optimized MVRVM, and ensemble learning forecasting using a simple addition approach. Experiments based on datasets collected from four municipalities in China demonstrated that the presented paradigm can hit higher accuracy than other comparable models, and the application analysis also shows that it has application potential in the AQI online forecasting system. To conclude, the proposed paradigm provides a promising alternative for AQI time series forecasting." @default.
- W4327757656 created "2023-03-18" @default.
- W4327757656 creator A5004641057 @default.
- W4327757656 creator A5019182050 @default.
- W4327757656 creator A5025164104 @default.
- W4327757656 creator A5042919549 @default.
- W4327757656 date "2023-06-01" @default.
- W4327757656 modified "2023-10-16" @default.
- W4327757656 title "A new perspective on air quality index time series forecasting: A ternary interval decomposition ensemble learning paradigm" @default.
- W4327757656 cites W1789813810 @default.
- W4327757656 cites W2000982976 @default.
- W4327757656 cites W2039853520 @default.
- W4327757656 cites W2076485554 @default.
- W4327757656 cites W2078301133 @default.
- W4327757656 cites W2118621186 @default.
- W4327757656 cites W2120390927 @default.
- W4327757656 cites W2125804487 @default.
- W4327757656 cites W2566512888 @default.
- W4327757656 cites W2591333620 @default.
- W4327757656 cites W2752187831 @default.
- W4327757656 cites W2781854549 @default.
- W4327757656 cites W2890991030 @default.
- W4327757656 cites W2897932070 @default.
- W4327757656 cites W2898307789 @default.
- W4327757656 cites W2907155248 @default.
- W4327757656 cites W2944361101 @default.
- W4327757656 cites W2945418845 @default.
- W4327757656 cites W2946446522 @default.
- W4327757656 cites W2947311840 @default.
- W4327757656 cites W2948535221 @default.
- W4327757656 cites W2955624416 @default.
- W4327757656 cites W2958872067 @default.
- W4327757656 cites W2966393605 @default.
- W4327757656 cites W2972259344 @default.
- W4327757656 cites W2980260699 @default.
- W4327757656 cites W2994255497 @default.
- W4327757656 cites W3008599913 @default.
- W4327757656 cites W3020040350 @default.
- W4327757656 cites W3027998989 @default.
- W4327757656 cites W3031449124 @default.
- W4327757656 cites W3038323027 @default.
- W4327757656 cites W3083243855 @default.
- W4327757656 cites W3083579549 @default.
- W4327757656 cites W3123760370 @default.
- W4327757656 cites W3124650867 @default.
- W4327757656 cites W3128680261 @default.
- W4327757656 cites W3136798355 @default.
- W4327757656 cites W3139477889 @default.
- W4327757656 cites W3154863786 @default.
- W4327757656 cites W3157762184 @default.
- W4327757656 cites W3158198533 @default.
- W4327757656 cites W3160195937 @default.
- W4327757656 cites W3161102093 @default.
- W4327757656 cites W3165700892 @default.
- W4327757656 cites W3167355376 @default.
- W4327757656 cites W3199514852 @default.
- W4327757656 cites W3202119936 @default.
- W4327757656 cites W3203211133 @default.
- W4327757656 cites W3207339813 @default.
- W4327757656 cites W3216578860 @default.
- W4327757656 cites W4200507048 @default.
- W4327757656 cites W4213206874 @default.
- W4327757656 cites W4228999430 @default.
- W4327757656 cites W4280605544 @default.
- W4327757656 cites W4281756882 @default.
- W4327757656 cites W4292671038 @default.
- W4327757656 cites W4293558662 @default.
- W4327757656 cites W4294771593 @default.
- W4327757656 cites W4296123733 @default.
- W4327757656 cites W4304607404 @default.
- W4327757656 cites W4308310740 @default.
- W4327757656 cites W4376849658 @default.
- W4327757656 cites W3141408015 @default.
- W4327757656 doi "https://doi.org/10.1016/j.techfore.2023.122504" @default.
- W4327757656 hasPublicationYear "2023" @default.
- W4327757656 type Work @default.
- W4327757656 citedByCount "3" @default.
- W4327757656 countsByYear W43277576562023 @default.
- W4327757656 crossrefType "journal-article" @default.
- W4327757656 hasAuthorship W4327757656A5004641057 @default.
- W4327757656 hasAuthorship W4327757656A5019182050 @default.
- W4327757656 hasAuthorship W4327757656A5025164104 @default.
- W4327757656 hasAuthorship W4327757656A5042919549 @default.
- W4327757656 hasConcept C114614502 @default.
- W4327757656 hasConcept C119857082 @default.
- W4327757656 hasConcept C124101348 @default.
- W4327757656 hasConcept C126314574 @default.
- W4327757656 hasConcept C151406439 @default.
- W4327757656 hasConcept C153294291 @default.
- W4327757656 hasConcept C154945302 @default.
- W4327757656 hasConcept C161584116 @default.
- W4327757656 hasConcept C205649164 @default.
- W4327757656 hasConcept C2778067643 @default.
- W4327757656 hasConcept C33923547 @default.
- W4327757656 hasConcept C41008148 @default.
- W4327757656 hasConcept C85617194 @default.
- W4327757656 hasConceptScore W4327757656C114614502 @default.
- W4327757656 hasConceptScore W4327757656C119857082 @default.