Matches in SemOpenAlex for { <https://semopenalex.org/work/W4327769466> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4327769466 endingPage "120" @default.
- W4327769466 startingPage "114" @default.
- W4327769466 abstract "Delineation of Gross Tumor Volume (GTV) is essential for the treatment of cancer with radiotherapy. GTV contouring is a time-consuming specialized manual task performed by radiation oncologists. Deep Learning (DL) algorithms have shown potential in creating automatic segmentations, reducing delineation time and inter-observer variation. The aim of this work was to create automatic segmentations of primary tumors (GTVp) and pathological lymph nodes (GTVn) in oropharyngeal cancer patients using DL. The organizers of the HECKTOR 2022 challenge provided 3D Computed Tomography (CT) and Positron Emission Tomography (PET) scans with ground-truth GTV segmentations acquired from nine different centers. Bounding box cropping was applied to obtain an anatomic based region of interest. We used the Swin UNETR model in combination with transfer learning. The Swin UNETR encoder weights were initialized by pre-trained weights of a self-supervised Swin UNETR model. An average Dice score of 0.656 was achieved on a test set of 359 patients from the HECKTOR 2022 challenge. Code is available at: https://github.com/HC94/swin_unetr_hecktor_2022 . Aicrowd Group Name: RT_UMCG" @default.
- W4327769466 created "2023-03-19" @default.
- W4327769466 creator A5002075278 @default.
- W4327769466 creator A5002522655 @default.
- W4327769466 creator A5005169233 @default.
- W4327769466 creator A5013935644 @default.
- W4327769466 creator A5014931649 @default.
- W4327769466 creator A5017073473 @default.
- W4327769466 creator A5024082845 @default.
- W4327769466 creator A5027255528 @default.
- W4327769466 creator A5038805449 @default.
- W4327769466 creator A5056686691 @default.
- W4327769466 creator A5069221325 @default.
- W4327769466 date "2023-01-01" @default.
- W4327769466 modified "2023-10-14" @default.
- W4327769466 title "Swin UNETR for Tumor and Lymph Node Segmentation Using 3D PET/CT Imaging: A Transfer Learning Approach" @default.
- W4327769466 cites W2020830322 @default.
- W4327769466 cites W3015693040 @default.
- W4327769466 cites W3215327553 @default.
- W4327769466 cites W4200066891 @default.
- W4327769466 cites W4226225263 @default.
- W4327769466 cites W4310749506 @default.
- W4327769466 doi "https://doi.org/10.1007/978-3-031-27420-6_12" @default.
- W4327769466 hasPublicationYear "2023" @default.
- W4327769466 type Work @default.
- W4327769466 citedByCount "1" @default.
- W4327769466 countsByYear W43277694662023 @default.
- W4327769466 crossrefType "book-chapter" @default.
- W4327769466 hasAuthorship W4327769466A5002075278 @default.
- W4327769466 hasAuthorship W4327769466A5002522655 @default.
- W4327769466 hasAuthorship W4327769466A5005169233 @default.
- W4327769466 hasAuthorship W4327769466A5013935644 @default.
- W4327769466 hasAuthorship W4327769466A5014931649 @default.
- W4327769466 hasAuthorship W4327769466A5017073473 @default.
- W4327769466 hasAuthorship W4327769466A5024082845 @default.
- W4327769466 hasAuthorship W4327769466A5027255528 @default.
- W4327769466 hasAuthorship W4327769466A5038805449 @default.
- W4327769466 hasAuthorship W4327769466A5056686691 @default.
- W4327769466 hasAuthorship W4327769466A5069221325 @default.
- W4327769466 hasConcept C108583219 @default.
- W4327769466 hasConcept C121684516 @default.
- W4327769466 hasConcept C146849305 @default.
- W4327769466 hasConcept C154945302 @default.
- W4327769466 hasConcept C2775842073 @default.
- W4327769466 hasConcept C2779104521 @default.
- W4327769466 hasConcept C2989005 @default.
- W4327769466 hasConcept C41008148 @default.
- W4327769466 hasConcept C71924100 @default.
- W4327769466 hasConcept C89600930 @default.
- W4327769466 hasConceptScore W4327769466C108583219 @default.
- W4327769466 hasConceptScore W4327769466C121684516 @default.
- W4327769466 hasConceptScore W4327769466C146849305 @default.
- W4327769466 hasConceptScore W4327769466C154945302 @default.
- W4327769466 hasConceptScore W4327769466C2775842073 @default.
- W4327769466 hasConceptScore W4327769466C2779104521 @default.
- W4327769466 hasConceptScore W4327769466C2989005 @default.
- W4327769466 hasConceptScore W4327769466C41008148 @default.
- W4327769466 hasConceptScore W4327769466C71924100 @default.
- W4327769466 hasConceptScore W4327769466C89600930 @default.
- W4327769466 hasLocation W43277694661 @default.
- W4327769466 hasOpenAccess W4327769466 @default.
- W4327769466 hasPrimaryLocation W43277694661 @default.
- W4327769466 hasRelatedWork W1997160662 @default.
- W4327769466 hasRelatedWork W2028761375 @default.
- W4327769466 hasRelatedWork W2044363672 @default.
- W4327769466 hasRelatedWork W2167401887 @default.
- W4327769466 hasRelatedWork W2360204191 @default.
- W4327769466 hasRelatedWork W2915337797 @default.
- W4327769466 hasRelatedWork W2968335000 @default.
- W4327769466 hasRelatedWork W2971415514 @default.
- W4327769466 hasRelatedWork W4313447631 @default.
- W4327769466 hasRelatedWork W4315434538 @default.
- W4327769466 isParatext "false" @default.
- W4327769466 isRetracted "false" @default.
- W4327769466 workType "book-chapter" @default.