Matches in SemOpenAlex for { <https://semopenalex.org/work/W4327772253> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4327772253 abstract "Deep learning and intelligent systems are constantly growing in popularity in the modern world. Artificial intelligence has several uses, all of which relate to human activities. Projection analysis is one of the general uses of neural networks and artificial intelligence. The authors of this work also carried out an artificial intelligence-based comparison investigation. Using various models, authors have made stock market predictions. Since stock markets are inherently unpredictable, accurate prediction analysis is crucial for assessing stock values and their downs and ups throughout time. Using algorithms for machine learning on data from financial news, which can also modify investors' interests, the stock values can be readily anticipated. Traditional prediction techniques, on the other hand, are no longer effective when applied to non-stationary time series information. With the development of deep learning technologies, this research suggests a way for accurately predicting stock prices." @default.
- W4327772253 created "2023-03-19" @default.
- W4327772253 creator A5001194035 @default.
- W4327772253 creator A5015971124 @default.
- W4327772253 creator A5024470450 @default.
- W4327772253 creator A5049362742 @default.
- W4327772253 creator A5064736288 @default.
- W4327772253 creator A5082785254 @default.
- W4327772253 creator A5084125976 @default.
- W4327772253 date "2022-12-28" @default.
- W4327772253 modified "2023-09-26" @default.
- W4327772253 title "Stock Price Prediction using Hybrid Deep Learning Technique for Accurate Performance" @default.
- W4327772253 cites W2162591519 @default.
- W4327772253 cites W3036522266 @default.
- W4327772253 cites W3124305327 @default.
- W4327772253 cites W3135559337 @default.
- W4327772253 cites W3175984383 @default.
- W4327772253 cites W4221086861 @default.
- W4327772253 cites W4224233911 @default.
- W4327772253 cites W4225363580 @default.
- W4327772253 cites W4225974022 @default.
- W4327772253 cites W4226113599 @default.
- W4327772253 cites W4226415288 @default.
- W4327772253 cites W4283320208 @default.
- W4327772253 cites W4293054926 @default.
- W4327772253 cites W4293428600 @default.
- W4327772253 doi "https://doi.org/10.1109/ickecs56523.2022.10060833" @default.
- W4327772253 hasPublicationYear "2022" @default.
- W4327772253 type Work @default.
- W4327772253 citedByCount "0" @default.
- W4327772253 crossrefType "proceedings-article" @default.
- W4327772253 hasAuthorship W4327772253A5001194035 @default.
- W4327772253 hasAuthorship W4327772253A5015971124 @default.
- W4327772253 hasAuthorship W4327772253A5024470450 @default.
- W4327772253 hasAuthorship W4327772253A5049362742 @default.
- W4327772253 hasAuthorship W4327772253A5064736288 @default.
- W4327772253 hasAuthorship W4327772253A5082785254 @default.
- W4327772253 hasAuthorship W4327772253A5084125976 @default.
- W4327772253 hasConcept C108583219 @default.
- W4327772253 hasConcept C119857082 @default.
- W4327772253 hasConcept C127413603 @default.
- W4327772253 hasConcept C143724316 @default.
- W4327772253 hasConcept C151406439 @default.
- W4327772253 hasConcept C151730666 @default.
- W4327772253 hasConcept C154945302 @default.
- W4327772253 hasConcept C15744967 @default.
- W4327772253 hasConcept C204036174 @default.
- W4327772253 hasConcept C2776256503 @default.
- W4327772253 hasConcept C2780299701 @default.
- W4327772253 hasConcept C2780586970 @default.
- W4327772253 hasConcept C2780762169 @default.
- W4327772253 hasConcept C2988984586 @default.
- W4327772253 hasConcept C41008148 @default.
- W4327772253 hasConcept C50644808 @default.
- W4327772253 hasConcept C77805123 @default.
- W4327772253 hasConcept C78519656 @default.
- W4327772253 hasConcept C86803240 @default.
- W4327772253 hasConceptScore W4327772253C108583219 @default.
- W4327772253 hasConceptScore W4327772253C119857082 @default.
- W4327772253 hasConceptScore W4327772253C127413603 @default.
- W4327772253 hasConceptScore W4327772253C143724316 @default.
- W4327772253 hasConceptScore W4327772253C151406439 @default.
- W4327772253 hasConceptScore W4327772253C151730666 @default.
- W4327772253 hasConceptScore W4327772253C154945302 @default.
- W4327772253 hasConceptScore W4327772253C15744967 @default.
- W4327772253 hasConceptScore W4327772253C204036174 @default.
- W4327772253 hasConceptScore W4327772253C2776256503 @default.
- W4327772253 hasConceptScore W4327772253C2780299701 @default.
- W4327772253 hasConceptScore W4327772253C2780586970 @default.
- W4327772253 hasConceptScore W4327772253C2780762169 @default.
- W4327772253 hasConceptScore W4327772253C2988984586 @default.
- W4327772253 hasConceptScore W4327772253C41008148 @default.
- W4327772253 hasConceptScore W4327772253C50644808 @default.
- W4327772253 hasConceptScore W4327772253C77805123 @default.
- W4327772253 hasConceptScore W4327772253C78519656 @default.
- W4327772253 hasConceptScore W4327772253C86803240 @default.
- W4327772253 hasLocation W43277722531 @default.
- W4327772253 hasOpenAccess W4327772253 @default.
- W4327772253 hasPrimaryLocation W43277722531 @default.
- W4327772253 hasRelatedWork W2153627311 @default.
- W4327772253 hasRelatedWork W2289642014 @default.
- W4327772253 hasRelatedWork W2296438605 @default.
- W4327772253 hasRelatedWork W2382431145 @default.
- W4327772253 hasRelatedWork W2794518116 @default.
- W4327772253 hasRelatedWork W2914867379 @default.
- W4327772253 hasRelatedWork W3004428332 @default.
- W4327772253 hasRelatedWork W4213225422 @default.
- W4327772253 hasRelatedWork W4309045103 @default.
- W4327772253 hasRelatedWork W4311304369 @default.
- W4327772253 isParatext "false" @default.
- W4327772253 isRetracted "false" @default.
- W4327772253 workType "article" @default.