Matches in SemOpenAlex for { <https://semopenalex.org/work/W4327773526> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4327773526 abstract "One disease kind that targets the brain in the form of clots is a brain tumour. An MRI image is needed in order to see a brain tumour in detail. Because of their similar colours, brain tumours and normal tissue might be hard to tell apart. Accurate research must be done on brain tumours. Segmentation is the answer to analysing a brain tumour. To get around this problem, brain tumour segmentation is used to split the brain tumour made up of various tissues, such as fat, edema, cerebrospinal fluid and normal brain tissue. The MRI image must first the kept at the margin of the image using median filtering. Then the threshold method is needed for the tumour segmentation procedure, which is iterated to take the greatest area. Nowadays, automated disease diagnosis using Magnetic Resonance Images, mammography, and further sources commonly makes use of these CBIR techniques. As a part of the objective of innovation for sustained development, this gap could be closed with the help of our innovative edge detection technique and deep learning feature extraction algorithm, accuracy is now considerably closer to that of manual evaluation by a human." @default.
- W4327773526 created "2023-03-19" @default.
- W4327773526 creator A5032818723 @default.
- W4327773526 creator A5046551554 @default.
- W4327773526 creator A5062189836 @default.
- W4327773526 creator A5069833353 @default.
- W4327773526 date "2022-12-09" @default.
- W4327773526 modified "2023-09-24" @default.
- W4327773526 title "Brain Tumour Segmentation Techniques from MR Images using Machine Learning: An Analysis" @default.
- W4327773526 cites W1969320674 @default.
- W4327773526 cites W1989567009 @default.
- W4327773526 cites W2003288956 @default.
- W4327773526 cites W2038103816 @default.
- W4327773526 cites W2044523788 @default.
- W4327773526 cites W2062759241 @default.
- W4327773526 cites W2065196932 @default.
- W4327773526 cites W2067681708 @default.
- W4327773526 cites W2102681122 @default.
- W4327773526 cites W2121247990 @default.
- W4327773526 cites W2131553043 @default.
- W4327773526 cites W2152387543 @default.
- W4327773526 cites W2322970575 @default.
- W4327773526 cites W2506272526 @default.
- W4327773526 cites W2553444198 @default.
- W4327773526 cites W2725781837 @default.
- W4327773526 cites W2775353147 @default.
- W4327773526 cites W2787279367 @default.
- W4327773526 cites W2808341807 @default.
- W4327773526 cites W2810884605 @default.
- W4327773526 cites W2887651778 @default.
- W4327773526 cites W2897282146 @default.
- W4327773526 cites W2902690273 @default.
- W4327773526 cites W2941230535 @default.
- W4327773526 cites W2953996206 @default.
- W4327773526 cites W3155857595 @default.
- W4327773526 cites W3159114333 @default.
- W4327773526 cites W4225128699 @default.
- W4327773526 cites W4225155471 @default.
- W4327773526 cites W4229334385 @default.
- W4327773526 doi "https://doi.org/10.1109/aist55798.2022.10064733" @default.
- W4327773526 hasPublicationYear "2022" @default.
- W4327773526 type Work @default.
- W4327773526 citedByCount "0" @default.
- W4327773526 crossrefType "proceedings-article" @default.
- W4327773526 hasAuthorship W4327773526A5032818723 @default.
- W4327773526 hasAuthorship W4327773526A5046551554 @default.
- W4327773526 hasAuthorship W4327773526A5062189836 @default.
- W4327773526 hasAuthorship W4327773526A5069833353 @default.
- W4327773526 hasConcept C119857082 @default.
- W4327773526 hasConcept C124504099 @default.
- W4327773526 hasConcept C126838900 @default.
- W4327773526 hasConcept C138885662 @default.
- W4327773526 hasConcept C143409427 @default.
- W4327773526 hasConcept C153180895 @default.
- W4327773526 hasConcept C154945302 @default.
- W4327773526 hasConcept C2776401178 @default.
- W4327773526 hasConcept C31972630 @default.
- W4327773526 hasConcept C41008148 @default.
- W4327773526 hasConcept C41895202 @default.
- W4327773526 hasConcept C52622490 @default.
- W4327773526 hasConcept C71924100 @default.
- W4327773526 hasConcept C774472 @default.
- W4327773526 hasConcept C89600930 @default.
- W4327773526 hasConceptScore W4327773526C119857082 @default.
- W4327773526 hasConceptScore W4327773526C124504099 @default.
- W4327773526 hasConceptScore W4327773526C126838900 @default.
- W4327773526 hasConceptScore W4327773526C138885662 @default.
- W4327773526 hasConceptScore W4327773526C143409427 @default.
- W4327773526 hasConceptScore W4327773526C153180895 @default.
- W4327773526 hasConceptScore W4327773526C154945302 @default.
- W4327773526 hasConceptScore W4327773526C2776401178 @default.
- W4327773526 hasConceptScore W4327773526C31972630 @default.
- W4327773526 hasConceptScore W4327773526C41008148 @default.
- W4327773526 hasConceptScore W4327773526C41895202 @default.
- W4327773526 hasConceptScore W4327773526C52622490 @default.
- W4327773526 hasConceptScore W4327773526C71924100 @default.
- W4327773526 hasConceptScore W4327773526C774472 @default.
- W4327773526 hasConceptScore W4327773526C89600930 @default.
- W4327773526 hasLocation W43277735261 @default.
- W4327773526 hasOpenAccess W4327773526 @default.
- W4327773526 hasPrimaryLocation W43277735261 @default.
- W4327773526 hasRelatedWork W1507266234 @default.
- W4327773526 hasRelatedWork W1631910785 @default.
- W4327773526 hasRelatedWork W1669643531 @default.
- W4327773526 hasRelatedWork W1721780360 @default.
- W4327773526 hasRelatedWork W2110230079 @default.
- W4327773526 hasRelatedWork W2117664411 @default.
- W4327773526 hasRelatedWork W2117933325 @default.
- W4327773526 hasRelatedWork W2122581818 @default.
- W4327773526 hasRelatedWork W2159066190 @default.
- W4327773526 hasRelatedWork W2739874619 @default.
- W4327773526 isParatext "false" @default.
- W4327773526 isRetracted "false" @default.
- W4327773526 workType "article" @default.