Matches in SemOpenAlex for { <https://semopenalex.org/work/W4327778800> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4327778800 abstract "Efficient prediction of internet traffic is an essential part of Self Organizing Network (SON) for ensuring proactive management. There are many existing solutions for internet traffic prediction using machine and deep learning techniques. But designing individual predictive models for each service provider in the network is challenging due to data heterogeneity, scarcity, and abnormality. Moreover, the performance of the deep sequence model in network traffic prediction with limited training data has not been studied extensively in the current works. In this paper, we investigated and evaluated the performance of the deep transfer learning technique in traffic prediction with inadequate historical data leveraging the knowledge of our pre-trained model. First, we used a larger real-world traffic dataset for source domain prediction based on five different deep sequence models: Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), LSTM Encoder-Decoder (LSTM_En_De), LSTM_En_De with Attention layer (LSTM_En_De_Atn), and Gated Recurrent Unit (GRU). Then, two best-performing models, LSTM_En_De and LSTM_En_De_Atn, from the source domain with an accuracy of 96.06% and 96.05% are considered for the target domain prediction. Finally, four smaller traffic datasets, collected for four different sources and destination pairs, are used in the target domain to compare the performance of the standard learning and transfer learning in terms of accuracy and execution time. According to our experimental result, transfer learning helps to reduce the execution time for most cases, while the model's accuracy is improved in transfer learning with a larger training session." @default.
- W4327778800 created "2023-03-19" @default.
- W4327778800 creator A5011011621 @default.
- W4327778800 creator A5037214801 @default.
- W4327778800 creator A5087889739 @default.
- W4327778800 date "2023-01-08" @default.
- W4327778800 modified "2023-10-16" @default.
- W4327778800 title "Transfer Learning Based Efficient Traffic Prediction with Limited Training Data" @default.
- W4327778800 cites W2165698076 @default.
- W4327778800 cites W2395579298 @default.
- W4327778800 cites W2734643636 @default.
- W4327778800 cites W2786808285 @default.
- W4327778800 cites W3089209260 @default.
- W4327778800 cites W3118343079 @default.
- W4327778800 cites W3189478000 @default.
- W4327778800 cites W4290996254 @default.
- W4327778800 cites W4291804568 @default.
- W4327778800 doi "https://doi.org/10.1109/ccnc51644.2023.10060745" @default.
- W4327778800 hasPublicationYear "2023" @default.
- W4327778800 type Work @default.
- W4327778800 citedByCount "0" @default.
- W4327778800 crossrefType "proceedings-article" @default.
- W4327778800 hasAuthorship W4327778800A5011011621 @default.
- W4327778800 hasAuthorship W4327778800A5037214801 @default.
- W4327778800 hasAuthorship W4327778800A5087889739 @default.
- W4327778800 hasBestOaLocation W43277788002 @default.
- W4327778800 hasConcept C108583219 @default.
- W4327778800 hasConcept C110875604 @default.
- W4327778800 hasConcept C119857082 @default.
- W4327778800 hasConcept C124101348 @default.
- W4327778800 hasConcept C134306372 @default.
- W4327778800 hasConcept C136764020 @default.
- W4327778800 hasConcept C147168706 @default.
- W4327778800 hasConcept C150899416 @default.
- W4327778800 hasConcept C154945302 @default.
- W4327778800 hasConcept C33923547 @default.
- W4327778800 hasConcept C36503486 @default.
- W4327778800 hasConcept C41008148 @default.
- W4327778800 hasConcept C50644808 @default.
- W4327778800 hasConcept C63969886 @default.
- W4327778800 hasConcept C67186912 @default.
- W4327778800 hasConcept C77088390 @default.
- W4327778800 hasConceptScore W4327778800C108583219 @default.
- W4327778800 hasConceptScore W4327778800C110875604 @default.
- W4327778800 hasConceptScore W4327778800C119857082 @default.
- W4327778800 hasConceptScore W4327778800C124101348 @default.
- W4327778800 hasConceptScore W4327778800C134306372 @default.
- W4327778800 hasConceptScore W4327778800C136764020 @default.
- W4327778800 hasConceptScore W4327778800C147168706 @default.
- W4327778800 hasConceptScore W4327778800C150899416 @default.
- W4327778800 hasConceptScore W4327778800C154945302 @default.
- W4327778800 hasConceptScore W4327778800C33923547 @default.
- W4327778800 hasConceptScore W4327778800C36503486 @default.
- W4327778800 hasConceptScore W4327778800C41008148 @default.
- W4327778800 hasConceptScore W4327778800C50644808 @default.
- W4327778800 hasConceptScore W4327778800C63969886 @default.
- W4327778800 hasConceptScore W4327778800C67186912 @default.
- W4327778800 hasConceptScore W4327778800C77088390 @default.
- W4327778800 hasLocation W43277788001 @default.
- W4327778800 hasLocation W43277788002 @default.
- W4327778800 hasOpenAccess W4327778800 @default.
- W4327778800 hasPrimaryLocation W43277788001 @default.
- W4327778800 hasRelatedWork W2889705046 @default.
- W4327778800 hasRelatedWork W2946016983 @default.
- W4327778800 hasRelatedWork W2960456850 @default.
- W4327778800 hasRelatedWork W4213299466 @default.
- W4327778800 hasRelatedWork W4312200629 @default.
- W4327778800 hasRelatedWork W4312685930 @default.
- W4327778800 hasRelatedWork W4317565044 @default.
- W4327778800 hasRelatedWork W4318834068 @default.
- W4327778800 hasRelatedWork W4318957922 @default.
- W4327778800 hasRelatedWork W4327778800 @default.
- W4327778800 isParatext "false" @default.
- W4327778800 isRetracted "false" @default.
- W4327778800 workType "article" @default.