Matches in SemOpenAlex for { <https://semopenalex.org/work/W4327780924> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4327780924 abstract "Android malware is continuously evolving at an alarming rate due to the growing vulnerabilities. This demands more effective malware detection methods. This paper presents DynaMalDroid, a dynamic analysis-based framework to detect malicious applications in the Android platform. The proposed framework contains three modules: dynamic analysis, feature engineering, and detection. We utilized the well-known CICMalDroid2020 dataset, and the system calls of apps are extracted through dynamic analysis. We trained our proposed model to recognize malware by selecting features obtained through the feature engineering module. Further, with these selected features, the detection module applies different Machine Learning classifiers like Random Forest, Decision Tree, Logistic Regression, Support Vector Machine, Naïve-Bayes, K-Nearest Neighbour, and AdaBoost, to recognize whether an application is malicious or not. The experiments have shown that several classifiers have demonstrated excellent performance and have an accuracy of up to 99%. The models with Support Vector Machine and AdaBoost classifiers have provided better detection accuracy of 99.3% and 99.5%, respectively." @default.
- W4327780924 created "2023-03-19" @default.
- W4327780924 creator A5069668861 @default.
- W4327780924 creator A5070890512 @default.
- W4327780924 date "2022-12-28" @default.
- W4327780924 modified "2023-09-27" @default.
- W4327780924 title "DynaMalDroid: Dynamic Analysis-Based Detection Framework for Android Malware Using Machine Learning Techniques" @default.
- W4327780924 cites W2907236248 @default.
- W4327780924 cites W2909609357 @default.
- W4327780924 cites W2979997161 @default.
- W4327780924 cites W2986232939 @default.
- W4327780924 cites W3011624874 @default.
- W4327780924 cites W3027678336 @default.
- W4327780924 cites W3035322448 @default.
- W4327780924 cites W3039088822 @default.
- W4327780924 cites W3046554150 @default.
- W4327780924 cites W3083703328 @default.
- W4327780924 cites W3094190102 @default.
- W4327780924 cites W3107207360 @default.
- W4327780924 cites W3107835297 @default.
- W4327780924 cites W3125391339 @default.
- W4327780924 cites W3161054997 @default.
- W4327780924 cites W3163053370 @default.
- W4327780924 cites W3210231570 @default.
- W4327780924 cites W4296472209 @default.
- W4327780924 doi "https://doi.org/10.1109/ickecs56523.2022.10060106" @default.
- W4327780924 hasPublicationYear "2022" @default.
- W4327780924 type Work @default.
- W4327780924 citedByCount "0" @default.
- W4327780924 crossrefType "proceedings-article" @default.
- W4327780924 hasAuthorship W4327780924A5069668861 @default.
- W4327780924 hasAuthorship W4327780924A5070890512 @default.
- W4327780924 hasConcept C108583219 @default.
- W4327780924 hasConcept C111919701 @default.
- W4327780924 hasConcept C119857082 @default.
- W4327780924 hasConcept C12267149 @default.
- W4327780924 hasConcept C124101348 @default.
- W4327780924 hasConcept C141404830 @default.
- W4327780924 hasConcept C153180895 @default.
- W4327780924 hasConcept C154945302 @default.
- W4327780924 hasConcept C169258074 @default.
- W4327780924 hasConcept C2778579508 @default.
- W4327780924 hasConcept C2778827112 @default.
- W4327780924 hasConcept C2779395397 @default.
- W4327780924 hasConcept C2989133298 @default.
- W4327780924 hasConcept C41008148 @default.
- W4327780924 hasConcept C52001869 @default.
- W4327780924 hasConcept C52622490 @default.
- W4327780924 hasConcept C541664917 @default.
- W4327780924 hasConcept C557433098 @default.
- W4327780924 hasConcept C84525736 @default.
- W4327780924 hasConceptScore W4327780924C108583219 @default.
- W4327780924 hasConceptScore W4327780924C111919701 @default.
- W4327780924 hasConceptScore W4327780924C119857082 @default.
- W4327780924 hasConceptScore W4327780924C12267149 @default.
- W4327780924 hasConceptScore W4327780924C124101348 @default.
- W4327780924 hasConceptScore W4327780924C141404830 @default.
- W4327780924 hasConceptScore W4327780924C153180895 @default.
- W4327780924 hasConceptScore W4327780924C154945302 @default.
- W4327780924 hasConceptScore W4327780924C169258074 @default.
- W4327780924 hasConceptScore W4327780924C2778579508 @default.
- W4327780924 hasConceptScore W4327780924C2778827112 @default.
- W4327780924 hasConceptScore W4327780924C2779395397 @default.
- W4327780924 hasConceptScore W4327780924C2989133298 @default.
- W4327780924 hasConceptScore W4327780924C41008148 @default.
- W4327780924 hasConceptScore W4327780924C52001869 @default.
- W4327780924 hasConceptScore W4327780924C52622490 @default.
- W4327780924 hasConceptScore W4327780924C541664917 @default.
- W4327780924 hasConceptScore W4327780924C557433098 @default.
- W4327780924 hasConceptScore W4327780924C84525736 @default.
- W4327780924 hasLocation W43277809241 @default.
- W4327780924 hasOpenAccess W4327780924 @default.
- W4327780924 hasPrimaryLocation W43277809241 @default.
- W4327780924 hasRelatedWork W2785978842 @default.
- W4327780924 hasRelatedWork W3114980949 @default.
- W4327780924 hasRelatedWork W3204641204 @default.
- W4327780924 hasRelatedWork W4205958290 @default.
- W4327780924 hasRelatedWork W4210285013 @default.
- W4327780924 hasRelatedWork W4210772651 @default.
- W4327780924 hasRelatedWork W4285180095 @default.
- W4327780924 hasRelatedWork W4308206417 @default.
- W4327780924 hasRelatedWork W4327780924 @default.
- W4327780924 hasRelatedWork W4362680613 @default.
- W4327780924 isParatext "false" @default.
- W4327780924 isRetracted "false" @default.
- W4327780924 workType "article" @default.