Matches in SemOpenAlex for { <https://semopenalex.org/work/W4327810366> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4327810366 abstract "Developing intelligent energy management systems with high adaptability and superiority is necessary and significant for Hybrid Electric Vehicles (HEVs). This paper proposed an ensemble learning-based scheme based on a learning automata module (LAM) to enhance vehicle energy efficiency. Two parallel base learners following two exploration-to-exploitation ratios (E2E) methods are used to generate an optimal solution, and the final action is jointly determined by the LAM using three ensemble methods. 'Reciprocal function-based decay' (RBD) and 'Step-based decay' (SBD) are proposed respectively to generate E2E ratio trajectories based on conventional Exponential decay (EXD) functions of reinforcement learning. Furthermore, considering the different performances of three decay functions, an optimal combination with the RBD, SBD, and EXD is employed to determine the ultimate action. Experiments are carried out in software-in-loop (SiL) and hardware-in-the-loop (HiL) to validate the potential performance of energy-saving under four predefined cycles. The SiL test demonstrates that the ensemble learning system with an optimal combination can achieve 1.09$%$ higher vehicle energy efficiency than a single Q-learning strategy with the EXD function. In the HiL test, the ensemble learning system with an optimal combination can save more than 1.04$%$ in the predefined real-world driving condition than the single Q-learning scheme based on the EXD function." @default.
- W4327810366 created "2023-03-19" @default.
- W4327810366 creator A5023539921 @default.
- W4327810366 creator A5043925036 @default.
- W4327810366 creator A5046981013 @default.
- W4327810366 creator A5056862593 @default.
- W4327810366 creator A5060138777 @default.
- W4327810366 creator A5090592047 @default.
- W4327810366 date "2023-03-15" @default.
- W4327810366 modified "2023-09-27" @default.
- W4327810366 title "Optimal Energy Management of Plug-in Hybrid Vehicles Through Exploration-to-Exploitation Ratio Control in Ensemble Reinforcement Learning" @default.
- W4327810366 doi "https://doi.org/10.48550/arxiv.2303.08981" @default.
- W4327810366 hasPublicationYear "2023" @default.
- W4327810366 type Work @default.
- W4327810366 citedByCount "0" @default.
- W4327810366 crossrefType "posted-content" @default.
- W4327810366 hasAuthorship W4327810366A5023539921 @default.
- W4327810366 hasAuthorship W4327810366A5043925036 @default.
- W4327810366 hasAuthorship W4327810366A5046981013 @default.
- W4327810366 hasAuthorship W4327810366A5056862593 @default.
- W4327810366 hasAuthorship W4327810366A5060138777 @default.
- W4327810366 hasAuthorship W4327810366A5090592047 @default.
- W4327810366 hasBestOaLocation W43278103661 @default.
- W4327810366 hasConcept C105795698 @default.
- W4327810366 hasConcept C112505250 @default.
- W4327810366 hasConcept C134306372 @default.
- W4327810366 hasConcept C14036430 @default.
- W4327810366 hasConcept C154945302 @default.
- W4327810366 hasConcept C177606310 @default.
- W4327810366 hasConcept C186370098 @default.
- W4327810366 hasConcept C188116033 @default.
- W4327810366 hasConcept C18903297 @default.
- W4327810366 hasConcept C199360897 @default.
- W4327810366 hasConcept C2775924081 @default.
- W4327810366 hasConcept C2776807809 @default.
- W4327810366 hasConcept C33923547 @default.
- W4327810366 hasConcept C41008148 @default.
- W4327810366 hasConcept C45942800 @default.
- W4327810366 hasConcept C47446073 @default.
- W4327810366 hasConcept C4924752 @default.
- W4327810366 hasConcept C77618280 @default.
- W4327810366 hasConcept C7817414 @default.
- W4327810366 hasConcept C78458016 @default.
- W4327810366 hasConcept C86803240 @default.
- W4327810366 hasConcept C97541855 @default.
- W4327810366 hasConceptScore W4327810366C105795698 @default.
- W4327810366 hasConceptScore W4327810366C112505250 @default.
- W4327810366 hasConceptScore W4327810366C134306372 @default.
- W4327810366 hasConceptScore W4327810366C14036430 @default.
- W4327810366 hasConceptScore W4327810366C154945302 @default.
- W4327810366 hasConceptScore W4327810366C177606310 @default.
- W4327810366 hasConceptScore W4327810366C186370098 @default.
- W4327810366 hasConceptScore W4327810366C188116033 @default.
- W4327810366 hasConceptScore W4327810366C18903297 @default.
- W4327810366 hasConceptScore W4327810366C199360897 @default.
- W4327810366 hasConceptScore W4327810366C2775924081 @default.
- W4327810366 hasConceptScore W4327810366C2776807809 @default.
- W4327810366 hasConceptScore W4327810366C33923547 @default.
- W4327810366 hasConceptScore W4327810366C41008148 @default.
- W4327810366 hasConceptScore W4327810366C45942800 @default.
- W4327810366 hasConceptScore W4327810366C47446073 @default.
- W4327810366 hasConceptScore W4327810366C4924752 @default.
- W4327810366 hasConceptScore W4327810366C77618280 @default.
- W4327810366 hasConceptScore W4327810366C7817414 @default.
- W4327810366 hasConceptScore W4327810366C78458016 @default.
- W4327810366 hasConceptScore W4327810366C86803240 @default.
- W4327810366 hasConceptScore W4327810366C97541855 @default.
- W4327810366 hasLocation W43278103661 @default.
- W4327810366 hasOpenAccess W4327810366 @default.
- W4327810366 hasPrimaryLocation W43278103661 @default.
- W4327810366 hasRelatedWork W1545451257 @default.
- W4327810366 hasRelatedWork W1825672687 @default.
- W4327810366 hasRelatedWork W2019538257 @default.
- W4327810366 hasRelatedWork W2111861907 @default.
- W4327810366 hasRelatedWork W2514105707 @default.
- W4327810366 hasRelatedWork W28967467 @default.
- W4327810366 hasRelatedWork W2923653485 @default.
- W4327810366 hasRelatedWork W3091032975 @default.
- W4327810366 hasRelatedWork W3127080378 @default.
- W4327810366 hasRelatedWork W4327604740 @default.
- W4327810366 isParatext "false" @default.
- W4327810366 isRetracted "false" @default.
- W4327810366 workType "article" @default.