Matches in SemOpenAlex for { <https://semopenalex.org/work/W4327811170> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W4327811170 abstract "PyVBMC is a Python implementation of the Variational Bayesian Monte Carlo (VBMC) algorithm for posterior and model inference for black-box computational models (Acerbi, 2018, 2020). VBMC is an approximate inference method designed for efficient parameter estimation and model assessment when model evaluations are mildly-to-very expensive (e.g., a second or more) and/or noisy. Specifically, VBMC computes: - a flexible (non-Gaussian) approximate posterior distribution of the model parameters, from which statistics and posterior samples can be easily extracted; - an approximation of the model evidence or marginal likelihood, a metric used for Bayesian model selection. PyVBMC can be applied to any computational or statistical model with up to roughly 10-15 continuous parameters, with the only requirement that the user can provide a Python function that computes the target log likelihood of the model, or an approximation thereof (e.g., an estimate of the likelihood obtained via simulation or Monte Carlo methods). PyVBMC is particularly effective when the model takes more than about a second per evaluation, with dramatic speed-ups of 1-2 orders of magnitude when compared to traditional approximate inference methods. Extensive benchmarks on both artificial test problems and a large number of real models from the computational sciences, particularly computational and cognitive neuroscience, show that VBMC generally - and often vastly - outperforms alternative methods for sample-efficient Bayesian inference, and is applicable to both exact and simulator-based models (Acerbi, 2018, 2019, 2020). PyVBMC brings this state-of-the-art inference algorithm to Python, along with an easy-to-use Pythonic interface for running the algorithm and manipulating and visualizing its results." @default.
- W4327811170 created "2023-03-19" @default.
- W4327811170 creator A5018117355 @default.
- W4327811170 creator A5031667972 @default.
- W4327811170 creator A5042394636 @default.
- W4327811170 creator A5065500757 @default.
- W4327811170 creator A5090892103 @default.
- W4327811170 date "2023-03-16" @default.
- W4327811170 modified "2023-09-27" @default.
- W4327811170 title "PyVBMC: Efficient Bayesian inference in Python" @default.
- W4327811170 doi "https://doi.org/10.48550/arxiv.2303.09519" @default.
- W4327811170 hasPublicationYear "2023" @default.
- W4327811170 type Work @default.
- W4327811170 citedByCount "0" @default.
- W4327811170 crossrefType "posted-content" @default.
- W4327811170 hasAuthorship W4327811170A5018117355 @default.
- W4327811170 hasAuthorship W4327811170A5031667972 @default.
- W4327811170 hasAuthorship W4327811170A5042394636 @default.
- W4327811170 hasAuthorship W4327811170A5065500757 @default.
- W4327811170 hasAuthorship W4327811170A5090892103 @default.
- W4327811170 hasConcept C105795698 @default.
- W4327811170 hasConcept C107673813 @default.
- W4327811170 hasConcept C111919701 @default.
- W4327811170 hasConcept C11413529 @default.
- W4327811170 hasConcept C119857082 @default.
- W4327811170 hasConcept C154945302 @default.
- W4327811170 hasConcept C160234255 @default.
- W4327811170 hasConcept C162376815 @default.
- W4327811170 hasConcept C167928553 @default.
- W4327811170 hasConcept C19499675 @default.
- W4327811170 hasConcept C2776214188 @default.
- W4327811170 hasConcept C2779377595 @default.
- W4327811170 hasConcept C33923547 @default.
- W4327811170 hasConcept C41008148 @default.
- W4327811170 hasConcept C519991488 @default.
- W4327811170 hasConcept C57830394 @default.
- W4327811170 hasConcept C89106044 @default.
- W4327811170 hasConcept C93959086 @default.
- W4327811170 hasConcept C95923904 @default.
- W4327811170 hasConceptScore W4327811170C105795698 @default.
- W4327811170 hasConceptScore W4327811170C107673813 @default.
- W4327811170 hasConceptScore W4327811170C111919701 @default.
- W4327811170 hasConceptScore W4327811170C11413529 @default.
- W4327811170 hasConceptScore W4327811170C119857082 @default.
- W4327811170 hasConceptScore W4327811170C154945302 @default.
- W4327811170 hasConceptScore W4327811170C160234255 @default.
- W4327811170 hasConceptScore W4327811170C162376815 @default.
- W4327811170 hasConceptScore W4327811170C167928553 @default.
- W4327811170 hasConceptScore W4327811170C19499675 @default.
- W4327811170 hasConceptScore W4327811170C2776214188 @default.
- W4327811170 hasConceptScore W4327811170C2779377595 @default.
- W4327811170 hasConceptScore W4327811170C33923547 @default.
- W4327811170 hasConceptScore W4327811170C41008148 @default.
- W4327811170 hasConceptScore W4327811170C519991488 @default.
- W4327811170 hasConceptScore W4327811170C57830394 @default.
- W4327811170 hasConceptScore W4327811170C89106044 @default.
- W4327811170 hasConceptScore W4327811170C93959086 @default.
- W4327811170 hasConceptScore W4327811170C95923904 @default.
- W4327811170 hasLocation W43278111701 @default.
- W4327811170 hasOpenAccess W4327811170 @default.
- W4327811170 hasPrimaryLocation W43278111701 @default.
- W4327811170 hasRelatedWork W1563730461 @default.
- W4327811170 hasRelatedWork W1978556363 @default.
- W4327811170 hasRelatedWork W2405192631 @default.
- W4327811170 hasRelatedWork W2417554456 @default.
- W4327811170 hasRelatedWork W2950223827 @default.
- W4327811170 hasRelatedWork W3008255512 @default.
- W4327811170 hasRelatedWork W3099078835 @default.
- W4327811170 hasRelatedWork W3167527995 @default.
- W4327811170 hasRelatedWork W4323321461 @default.
- W4327811170 hasRelatedWork W75953361 @default.
- W4327811170 isParatext "false" @default.
- W4327811170 isRetracted "false" @default.
- W4327811170 workType "article" @default.