Matches in SemOpenAlex for { <https://semopenalex.org/work/W4327811700> ?p ?o ?g. }
- W4327811700 endingPage "412" @default.
- W4327811700 startingPage "387" @default.
- W4327811700 abstract "Abstract The goodness-of-fit of the unidimensional monotone latent variable model can be assessed using the empirical conditions of nonnegative correlations (Mokken in A theory and procedure of scale-analysis, Mouton, The Hague, 1971), manifest monotonicity (Junker in Ann Stat 21:1359–1378, 1993), multivariate total positivity of order 2 (Bartolucci and Forcina in Ann Stat 28:1206–1218, 2000), and nonnegative partial correlations (Ellis in Psychometrika 79:303–316, 2014). We show that multidimensional monotone factor models with independent factors also imply these empirical conditions; therefore, the conditions are insensitive to multidimensionality. Conditional association (Rosenbaum in Psychometrika 49(3):425–435, 1984) can detect multidimensionality, but tests of it (De Gooijer and Yuan in Comput Stat Data Anal 55:34–44, 2011) are usually not feasible for realistic numbers of items. The only existing feasible test procedures that can reveal multidimensionality are Rosenbaum’s (Psychometrika 49(3):425–435, 1984) Case 2 and Case 5, which test the covariance of two items or two subtests conditionally on the unweighted sum of the other items. We improve this procedure by conditioning on a weighted sum of the other items. The weights are estimated in a training sample from a linear regression analysis. Simulations show that the Type I error rate is under control and that, for large samples, the power is higher if one dimension is more important than the other or if there is a third dimension. In small samples and with two equally important dimensions, using the unweighted sum yields greater power." @default.
- W4327811700 created "2023-03-19" @default.
- W4327811700 creator A5023581599 @default.
- W4327811700 creator A5047720335 @default.
- W4327811700 date "2023-03-18" @default.
- W4327811700 modified "2023-10-14" @default.
- W4327811700 title "A Test to Distinguish Monotone Homogeneity from Monotone Multifactor Models" @default.
- W4327811700 cites W1494498837 @default.
- W4327811700 cites W155537083 @default.
- W4327811700 cites W1558808840 @default.
- W4327811700 cites W1560905133 @default.
- W4327811700 cites W1596515083 @default.
- W4327811700 cites W1656546070 @default.
- W4327811700 cites W1909482275 @default.
- W4327811700 cites W1964770077 @default.
- W4327811700 cites W1967614286 @default.
- W4327811700 cites W1973229879 @default.
- W4327811700 cites W1975578747 @default.
- W4327811700 cites W1978305223 @default.
- W4327811700 cites W1981548559 @default.
- W4327811700 cites W1988839819 @default.
- W4327811700 cites W1991831156 @default.
- W4327811700 cites W1993010136 @default.
- W4327811700 cites W1994431105 @default.
- W4327811700 cites W1996521170 @default.
- W4327811700 cites W1999387197 @default.
- W4327811700 cites W2010001428 @default.
- W4327811700 cites W2010182987 @default.
- W4327811700 cites W2010417857 @default.
- W4327811700 cites W2011672909 @default.
- W4327811700 cites W2011780313 @default.
- W4327811700 cites W2014036356 @default.
- W4327811700 cites W2022407215 @default.
- W4327811700 cites W2029517174 @default.
- W4327811700 cites W2044218370 @default.
- W4327811700 cites W2044666483 @default.
- W4327811700 cites W2052438216 @default.
- W4327811700 cites W2055844613 @default.
- W4327811700 cites W2057798302 @default.
- W4327811700 cites W2057863720 @default.
- W4327811700 cites W2059197990 @default.
- W4327811700 cites W2066165827 @default.
- W4327811700 cites W2071934349 @default.
- W4327811700 cites W2084797070 @default.
- W4327811700 cites W2090413389 @default.
- W4327811700 cites W2095170254 @default.
- W4327811700 cites W2096076117 @default.
- W4327811700 cites W2102335529 @default.
- W4327811700 cites W2110065044 @default.
- W4327811700 cites W2116355985 @default.
- W4327811700 cites W2124146871 @default.
- W4327811700 cites W2130702804 @default.
- W4327811700 cites W2130956934 @default.
- W4327811700 cites W2133487567 @default.
- W4327811700 cites W2140678484 @default.
- W4327811700 cites W2147913675 @default.
- W4327811700 cites W2150170158 @default.
- W4327811700 cites W2159276701 @default.
- W4327811700 cites W2170081377 @default.
- W4327811700 cites W2172125718 @default.
- W4327811700 cites W2505213109 @default.
- W4327811700 cites W2560361036 @default.
- W4327811700 cites W2782479090 @default.
- W4327811700 cites W2918122284 @default.
- W4327811700 cites W2963763760 @default.
- W4327811700 cites W3012065372 @default.
- W4327811700 cites W3103635125 @default.
- W4327811700 cites W4210352548 @default.
- W4327811700 cites W4211056476 @default.
- W4327811700 cites W4235473894 @default.
- W4327811700 cites W4238498655 @default.
- W4327811700 cites W4242439180 @default.
- W4327811700 cites W606325333 @default.
- W4327811700 doi "https://doi.org/10.1007/s11336-023-09905-w" @default.
- W4327811700 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36933110" @default.
- W4327811700 hasPublicationYear "2023" @default.
- W4327811700 type Work @default.
- W4327811700 citedByCount "0" @default.
- W4327811700 crossrefType "journal-article" @default.
- W4327811700 hasAuthorship W4327811700A5023581599 @default.
- W4327811700 hasAuthorship W4327811700A5047720335 @default.
- W4327811700 hasBestOaLocation W43278117001 @default.
- W4327811700 hasConcept C105795698 @default.
- W4327811700 hasConcept C114614502 @default.
- W4327811700 hasConcept C132480984 @default.
- W4327811700 hasConcept C134306372 @default.
- W4327811700 hasConcept C142259097 @default.
- W4327811700 hasConcept C149782125 @default.
- W4327811700 hasConcept C161584116 @default.
- W4327811700 hasConcept C171606756 @default.
- W4327811700 hasConcept C178650346 @default.
- W4327811700 hasConcept C19875794 @default.
- W4327811700 hasConcept C2524010 @default.
- W4327811700 hasConcept C2834757 @default.
- W4327811700 hasConcept C28826006 @default.
- W4327811700 hasConcept C33676613 @default.
- W4327811700 hasConcept C33923547 @default.
- W4327811700 hasConcept C40696583 @default.