Matches in SemOpenAlex for { <https://semopenalex.org/work/W4327905830> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W4327905830 abstract "Abstract Traditional history-matching process suffers from non-uniqueness solutions, subsurface uncertainties, and high computational cost. This work proposes a robust history-matching workflow utilizing the Bayesian Markov Chain Monte Carlo (MCMC) and Bidirectional Long-Short Term Memory (BiLSTM) network to perform history matching under uncertainties for geothermal resource development efficiently. There are mainly four steps. Step 1: Identifying uncertainty parameters. Step 2: The BiLSTM is built to map the nonlinear relationship between the key uncertainty parameters (e.g., injection rates, reservoir temperature, etc.) and time series outputs (temperature of producer). Bayesian optimization is used to automate the tuning process of the hyper-parameters. Step 3: The Bayesian MCMC is performed to inverse the uncertainty parameters. The BiLSTM is served as the forward model to reduce the computational expense. Step 4: If the errors of the predicted response between the high-fidelity model and Bayesian MCMC are high, we need to revisit the accuracy of the BiLSTM and the prior information on the uncertainty parameters. We demonstrate the proposed method using a 3D fractured geothermal reservoir, where the cold water is injected into a geothermal reservoir, and the energy is extracted by producing hot water in a producer. Results show that the proposed Bayesian MCMC and BiLSTM method can successfully inverse the uncertainty parameters with narrow uncertainties by comparing the inversed parameters and the ground truth. We then compare its superiority with models like PCE, Kriging, and SVR, and our method achieves the highest accuracy. We propose a Bayesian MCMC and BiLSTM-based history matching method for uncertainty parameters inversion and demonstrate its accuracy and robustness compared with other models. This approach provides an efficient and practical history-matching method for geothermal extraction with significant uncertainties." @default.
- W4327905830 created "2023-03-21" @default.
- W4327905830 creator A5009325358 @default.
- W4327905830 creator A5009674104 @default.
- W4327905830 creator A5045839676 @default.
- W4327905830 creator A5067974945 @default.
- W4327905830 creator A5072179993 @default.
- W4327905830 creator A5084996089 @default.
- W4327905830 date "2023-03-21" @default.
- W4327905830 modified "2023-09-30" @default.
- W4327905830 title "Parameter Inversion in Geothermal Reservoir Using Markov Chain Monte Carlo and Deep Learning" @default.
- W4327905830 doi "https://doi.org/10.2118/212185-ms" @default.
- W4327905830 hasPublicationYear "2023" @default.
- W4327905830 type Work @default.
- W4327905830 citedByCount "0" @default.
- W4327905830 crossrefType "proceedings-article" @default.
- W4327905830 hasAuthorship W4327905830A5009325358 @default.
- W4327905830 hasAuthorship W4327905830A5009674104 @default.
- W4327905830 hasAuthorship W4327905830A5045839676 @default.
- W4327905830 hasAuthorship W4327905830A5067974945 @default.
- W4327905830 hasAuthorship W4327905830A5072179993 @default.
- W4327905830 hasAuthorship W4327905830A5084996089 @default.
- W4327905830 hasConcept C105795698 @default.
- W4327905830 hasConcept C107673813 @default.
- W4327905830 hasConcept C111350023 @default.
- W4327905830 hasConcept C111766609 @default.
- W4327905830 hasConcept C11413529 @default.
- W4327905830 hasConcept C119857082 @default.
- W4327905830 hasConcept C124101348 @default.
- W4327905830 hasConcept C126255220 @default.
- W4327905830 hasConcept C127313418 @default.
- W4327905830 hasConcept C154945302 @default.
- W4327905830 hasConcept C177212765 @default.
- W4327905830 hasConcept C19499675 @default.
- W4327905830 hasConcept C33923547 @default.
- W4327905830 hasConcept C41008148 @default.
- W4327905830 hasConcept C77088390 @default.
- W4327905830 hasConcept C8058405 @default.
- W4327905830 hasConceptScore W4327905830C105795698 @default.
- W4327905830 hasConceptScore W4327905830C107673813 @default.
- W4327905830 hasConceptScore W4327905830C111350023 @default.
- W4327905830 hasConceptScore W4327905830C111766609 @default.
- W4327905830 hasConceptScore W4327905830C11413529 @default.
- W4327905830 hasConceptScore W4327905830C119857082 @default.
- W4327905830 hasConceptScore W4327905830C124101348 @default.
- W4327905830 hasConceptScore W4327905830C126255220 @default.
- W4327905830 hasConceptScore W4327905830C127313418 @default.
- W4327905830 hasConceptScore W4327905830C154945302 @default.
- W4327905830 hasConceptScore W4327905830C177212765 @default.
- W4327905830 hasConceptScore W4327905830C19499675 @default.
- W4327905830 hasConceptScore W4327905830C33923547 @default.
- W4327905830 hasConceptScore W4327905830C41008148 @default.
- W4327905830 hasConceptScore W4327905830C77088390 @default.
- W4327905830 hasConceptScore W4327905830C8058405 @default.
- W4327905830 hasLocation W43279058301 @default.
- W4327905830 hasOpenAccess W4327905830 @default.
- W4327905830 hasPrimaryLocation W43279058301 @default.
- W4327905830 hasRelatedWork W1513280753 @default.
- W4327905830 hasRelatedWork W1814189289 @default.
- W4327905830 hasRelatedWork W1991852393 @default.
- W4327905830 hasRelatedWork W2037868053 @default.
- W4327905830 hasRelatedWork W2546704476 @default.
- W4327905830 hasRelatedWork W2961085424 @default.
- W4327905830 hasRelatedWork W3004547119 @default.
- W4327905830 hasRelatedWork W3034669169 @default.
- W4327905830 hasRelatedWork W4287870652 @default.
- W4327905830 hasRelatedWork W74710183 @default.
- W4327905830 isParatext "false" @default.
- W4327905830 isRetracted "false" @default.
- W4327905830 workType "article" @default.