Matches in SemOpenAlex for { <https://semopenalex.org/work/W4327909575> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4327909575 endingPage "103263" @default.
- W4327909575 startingPage "103263" @default.
- W4327909575 abstract "This paper proposes an automatic framework for pylon detection by a hierarchical coarse-to-fine segmentation of powerline corridors from UAV laser scanning point clouds. To this end, the proposed framework starts by roughly detecting the pylon location using the voxel-based height features derived from powerline corridor distribution in the vertical direction. The roughly detected pylons are then fed into the fine-grained pylon segmentation step, from which the fine-grained pylon points are learned by leveraging the shape prior knowledge. The idea behind the fine-grained is that most of the pylons can be cut horizontally into a series of rectangular cross-sections whose sizes from top to bottom are growing at a constant rate. By this linear growth relationship, the distorted cross-sections, which most commonly occur at pylon legs due to the influence of the attachments, such as trees and brush, can be accurately restored using the linear least squares regression. The performance of the proposed method was evaluated on two datasets over hilly and flat landforms. Our evaluation results showed that for powerlines in flat terrain, the proposed method achieved a precision of 99.8%, recall of 99.5%, and F1-score of 99.7%. On hilly terrain, a slightly lower performance was obtained, with a precision of 98.8%, recall of 97.8%, and F1-score of 98.3%. The proposed method’s accuracy is on par with or even better than other mainstream pylon detection algorithms." @default.
- W4327909575 created "2023-03-21" @default.
- W4327909575 creator A5001330715 @default.
- W4327909575 creator A5016744162 @default.
- W4327909575 creator A5017459684 @default.
- W4327909575 creator A5030640908 @default.
- W4327909575 creator A5039428419 @default.
- W4327909575 creator A5067613680 @default.
- W4327909575 date "2023-04-01" @default.
- W4327909575 modified "2023-09-26" @default.
- W4327909575 title "An automatic framework for pylon detection by a hierarchical coarse-to-fine segmentation of powerline corridors from UAV LiDAR point clouds" @default.
- W4327909575 cites W1907835391 @default.
- W4327909575 cites W1986522259 @default.
- W4327909575 cites W2001014393 @default.
- W4327909575 cites W2009899523 @default.
- W4327909575 cites W2034546021 @default.
- W4327909575 cites W2062520712 @default.
- W4327909575 cites W2301086635 @default.
- W4327909575 cites W2334845011 @default.
- W4327909575 cites W2436494909 @default.
- W4327909575 cites W2739764235 @default.
- W4327909575 cites W2769901274 @default.
- W4327909575 cites W2800288384 @default.
- W4327909575 cites W2892686729 @default.
- W4327909575 cites W2911818547 @default.
- W4327909575 cites W2953297071 @default.
- W4327909575 cites W2953708357 @default.
- W4327909575 cites W2965658553 @default.
- W4327909575 cites W2989469136 @default.
- W4327909575 cites W3015550093 @default.
- W4327909575 cites W3016855317 @default.
- W4327909575 cites W3121580487 @default.
- W4327909575 cites W3163086161 @default.
- W4327909575 doi "https://doi.org/10.1016/j.jag.2023.103263" @default.
- W4327909575 hasPublicationYear "2023" @default.
- W4327909575 type Work @default.
- W4327909575 citedByCount "0" @default.
- W4327909575 crossrefType "journal-article" @default.
- W4327909575 hasAuthorship W4327909575A5001330715 @default.
- W4327909575 hasAuthorship W4327909575A5016744162 @default.
- W4327909575 hasAuthorship W4327909575A5017459684 @default.
- W4327909575 hasAuthorship W4327909575A5030640908 @default.
- W4327909575 hasAuthorship W4327909575A5039428419 @default.
- W4327909575 hasAuthorship W4327909575A5067613680 @default.
- W4327909575 hasBestOaLocation W43279095751 @default.
- W4327909575 hasConcept C131979681 @default.
- W4327909575 hasConcept C149635348 @default.
- W4327909575 hasConcept C154945302 @default.
- W4327909575 hasConcept C161840515 @default.
- W4327909575 hasConcept C166957645 @default.
- W4327909575 hasConcept C174943157 @default.
- W4327909575 hasConcept C195295435 @default.
- W4327909575 hasConcept C205649164 @default.
- W4327909575 hasConcept C2524010 @default.
- W4327909575 hasConcept C2780513914 @default.
- W4327909575 hasConcept C28719098 @default.
- W4327909575 hasConcept C31972630 @default.
- W4327909575 hasConcept C33923547 @default.
- W4327909575 hasConcept C41008148 @default.
- W4327909575 hasConcept C51399673 @default.
- W4327909575 hasConcept C58640448 @default.
- W4327909575 hasConcept C62649853 @default.
- W4327909575 hasConcept C89600930 @default.
- W4327909575 hasConceptScore W4327909575C131979681 @default.
- W4327909575 hasConceptScore W4327909575C149635348 @default.
- W4327909575 hasConceptScore W4327909575C154945302 @default.
- W4327909575 hasConceptScore W4327909575C161840515 @default.
- W4327909575 hasConceptScore W4327909575C166957645 @default.
- W4327909575 hasConceptScore W4327909575C174943157 @default.
- W4327909575 hasConceptScore W4327909575C195295435 @default.
- W4327909575 hasConceptScore W4327909575C205649164 @default.
- W4327909575 hasConceptScore W4327909575C2524010 @default.
- W4327909575 hasConceptScore W4327909575C2780513914 @default.
- W4327909575 hasConceptScore W4327909575C28719098 @default.
- W4327909575 hasConceptScore W4327909575C31972630 @default.
- W4327909575 hasConceptScore W4327909575C33923547 @default.
- W4327909575 hasConceptScore W4327909575C41008148 @default.
- W4327909575 hasConceptScore W4327909575C51399673 @default.
- W4327909575 hasConceptScore W4327909575C58640448 @default.
- W4327909575 hasConceptScore W4327909575C62649853 @default.
- W4327909575 hasConceptScore W4327909575C89600930 @default.
- W4327909575 hasLocation W43279095751 @default.
- W4327909575 hasOpenAccess W4327909575 @default.
- W4327909575 hasPrimaryLocation W43279095751 @default.
- W4327909575 hasRelatedWork W1597662815 @default.
- W4327909575 hasRelatedWork W2020347729 @default.
- W4327909575 hasRelatedWork W2065331604 @default.
- W4327909575 hasRelatedWork W2074612103 @default.
- W4327909575 hasRelatedWork W2194160504 @default.
- W4327909575 hasRelatedWork W2377234638 @default.
- W4327909575 hasRelatedWork W2394196665 @default.
- W4327909575 hasRelatedWork W2599951341 @default.
- W4327909575 hasRelatedWork W4211037083 @default.
- W4327909575 hasRelatedWork W2092795029 @default.
- W4327909575 hasVolume "118" @default.
- W4327909575 isParatext "false" @default.
- W4327909575 isRetracted "false" @default.
- W4327909575 workType "article" @default.