Matches in SemOpenAlex for { <https://semopenalex.org/work/W4327909711> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4327909711 abstract "Neutropenia is one of the common side effects of chemotherapy in cancer patients. Chemotherapy-induced neutropenia can lead to complications, dose reduction or treatment delay. Namely, early diagnosis and management of neutropenia are needed to maximize the treatment. In the medical field, machine learning methods have been utilized to predict diseases. In this study, we predicted neutropenia 48 hours in advance of adult cancer patients who were prescribed cytotoxic drugs. Data of 5,308 breast cancer patients and 5,409 lung cancer patients were obtained from the National Cancer Center clinical data warehouse (CDW). Patient data from the two cancers were separately preprocessed and presented as time-series datasets of clinical events. Two neural network models were employed for prediction: Bi-LSTM and RTAIN. Bi-LSTM showed the best performance with the area under the receiver operating characteristic curve (AUROC) of 0.902 and 0.788 in breast and lung cancer patients, respectively. To identify important features and time points for predicting neutropenia, we employed RTAIN. It provided an interpretation of the prediction with AUROC values of 0.899 for breast and 0.736 for lung cancer patients. This study allows for the classification of patients at high risk for neutropenia and may assist in medical decisions before neutropenia occurs." @default.
- W4327909711 created "2023-03-21" @default.
- W4327909711 creator A5010308787 @default.
- W4327909711 creator A5029925322 @default.
- W4327909711 creator A5061822347 @default.
- W4327909711 creator A5065455532 @default.
- W4327909711 creator A5072097110 @default.
- W4327909711 creator A5076365607 @default.
- W4327909711 date "2023-02-01" @default.
- W4327909711 modified "2023-10-10" @default.
- W4327909711 title "Prediction of Chemotherapy-Induced Neutropenia using Machine Learning in Cancer Patients" @default.
- W4327909711 cites W2060913534 @default.
- W4327909711 cites W2151090489 @default.
- W4327909711 cites W2801136696 @default.
- W4327909711 cites W2904782971 @default.
- W4327909711 cites W3000470572 @default.
- W4327909711 cites W3083872358 @default.
- W4327909711 cites W3125584267 @default.
- W4327909711 cites W3198524722 @default.
- W4327909711 doi "https://doi.org/10.1109/bigcomp57234.2023.00030" @default.
- W4327909711 hasPublicationYear "2023" @default.
- W4327909711 type Work @default.
- W4327909711 citedByCount "0" @default.
- W4327909711 crossrefType "proceedings-article" @default.
- W4327909711 hasAuthorship W4327909711A5010308787 @default.
- W4327909711 hasAuthorship W4327909711A5029925322 @default.
- W4327909711 hasAuthorship W4327909711A5061822347 @default.
- W4327909711 hasAuthorship W4327909711A5065455532 @default.
- W4327909711 hasAuthorship W4327909711A5072097110 @default.
- W4327909711 hasAuthorship W4327909711A5076365607 @default.
- W4327909711 hasConcept C119857082 @default.
- W4327909711 hasConcept C121608353 @default.
- W4327909711 hasConcept C126322002 @default.
- W4327909711 hasConcept C143998085 @default.
- W4327909711 hasConcept C177713679 @default.
- W4327909711 hasConcept C2776256026 @default.
- W4327909711 hasConcept C2776694085 @default.
- W4327909711 hasConcept C2777063308 @default.
- W4327909711 hasConcept C2778850193 @default.
- W4327909711 hasConcept C41008148 @default.
- W4327909711 hasConcept C530470458 @default.
- W4327909711 hasConcept C58471807 @default.
- W4327909711 hasConcept C71924100 @default.
- W4327909711 hasConceptScore W4327909711C119857082 @default.
- W4327909711 hasConceptScore W4327909711C121608353 @default.
- W4327909711 hasConceptScore W4327909711C126322002 @default.
- W4327909711 hasConceptScore W4327909711C143998085 @default.
- W4327909711 hasConceptScore W4327909711C177713679 @default.
- W4327909711 hasConceptScore W4327909711C2776256026 @default.
- W4327909711 hasConceptScore W4327909711C2776694085 @default.
- W4327909711 hasConceptScore W4327909711C2777063308 @default.
- W4327909711 hasConceptScore W4327909711C2778850193 @default.
- W4327909711 hasConceptScore W4327909711C41008148 @default.
- W4327909711 hasConceptScore W4327909711C530470458 @default.
- W4327909711 hasConceptScore W4327909711C58471807 @default.
- W4327909711 hasConceptScore W4327909711C71924100 @default.
- W4327909711 hasFunder F4320337495 @default.
- W4327909711 hasLocation W43279097111 @default.
- W4327909711 hasOpenAccess W4327909711 @default.
- W4327909711 hasPrimaryLocation W43279097111 @default.
- W4327909711 hasRelatedWork W130051642 @default.
- W4327909711 hasRelatedWork W189281016 @default.
- W4327909711 hasRelatedWork W1945820803 @default.
- W4327909711 hasRelatedWork W2000475715 @default.
- W4327909711 hasRelatedWork W2348566799 @default.
- W4327909711 hasRelatedWork W2560259057 @default.
- W4327909711 hasRelatedWork W2589373649 @default.
- W4327909711 hasRelatedWork W4240672152 @default.
- W4327909711 hasRelatedWork W4312909839 @default.
- W4327909711 hasRelatedWork W4381480068 @default.
- W4327909711 isParatext "false" @default.
- W4327909711 isRetracted "false" @default.
- W4327909711 workType "article" @default.