Matches in SemOpenAlex for { <https://semopenalex.org/work/W4327916915> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W4327916915 abstract "Abstract The highly nonlinear nature of equation-of-state-based (EOS-based) flash calculations encages high-fidelity compositional simulation, as most of the CPU time is spent on detecting phase stability and calculating equilibrium phase amounts and compositions. With the rapid development of machine learning (ML) techniques, they are growing to substitute classical iterative solvers for speeding up flash calculations. However, conventional data-driven neural networks fail to account for physical constraints, like chemical potential equilibrium (equivalent to fugacity equality in the PT flash formulation) and interphase/intraphase mass conservation. In this work, we propose a physics-constrained neural network (PcNN) that first conserves both fugacity equality and mass balance constraints. To ease the inclusion of fugacity equality, it is reformulated in terms of equilibrium ratios and then introduced with a relaxation parameter such that phase split calculations are extended to the single-phase regime. This makes it technologically feasible to incorporate the fugacity equality constraint into the proposed PcNN model without any computational difficulty. The workflow for the development of the proposed PcNN model includes four steps. Step 1: Perform the constrained Latin hypercube sampling (LHS) to generate representative mixtures covering a variety of fluid types, including wet gas, gas condensate, volatile oil, and black oil. Step 2: Conduct PT flash calculations using the Peng-Robinson (PR) EOS for each fluid mixture. A wide range of reservoir pressures and temperatures are considered, from which we sample the training data for each fluid mixture through grid search. Step 3: Build an optimized PcNN model by including the fugacity equality and mass conservation constraints in the loss function. Bayesian optimization is used to determine the optimal hyperparameters. Step 4: Validate the PcNN model. In this step, we conduct blind validation by comparing it with the iterative PT flash algorithm." @default.
- W4327916915 created "2023-03-21" @default.
- W4327916915 creator A5009325358 @default.
- W4327916915 creator A5009674104 @default.
- W4327916915 creator A5045839676 @default.
- W4327916915 creator A5067974945 @default.
- W4327916915 creator A5072179993 @default.
- W4327916915 creator A5084996089 @default.
- W4327916915 date "2023-03-21" @default.
- W4327916915 modified "2023-10-14" @default.
- W4327916915 title "Physics-Constrained Neural Network (PcNN): Phase Behavior Modeling for Complex Reservoir Fluids" @default.
- W4327916915 doi "https://doi.org/10.2118/212209-ms" @default.
- W4327916915 hasPublicationYear "2023" @default.
- W4327916915 type Work @default.
- W4327916915 citedByCount "0" @default.
- W4327916915 crossrefType "proceedings-article" @default.
- W4327916915 hasAuthorship W4327916915A5009325358 @default.
- W4327916915 hasAuthorship W4327916915A5009674104 @default.
- W4327916915 hasAuthorship W4327916915A5045839676 @default.
- W4327916915 hasAuthorship W4327916915A5067974945 @default.
- W4327916915 hasAuthorship W4327916915A5072179993 @default.
- W4327916915 hasAuthorship W4327916915A5084996089 @default.
- W4327916915 hasConcept C11413529 @default.
- W4327916915 hasConcept C121332964 @default.
- W4327916915 hasConcept C121864883 @default.
- W4327916915 hasConcept C154945302 @default.
- W4327916915 hasConcept C158622935 @default.
- W4327916915 hasConcept C28826006 @default.
- W4327916915 hasConcept C33923547 @default.
- W4327916915 hasConcept C41008148 @default.
- W4327916915 hasConcept C50644808 @default.
- W4327916915 hasConcept C53810900 @default.
- W4327916915 hasConcept C62520636 @default.
- W4327916915 hasConcept C85084404 @default.
- W4327916915 hasConcept C97355855 @default.
- W4327916915 hasConceptScore W4327916915C11413529 @default.
- W4327916915 hasConceptScore W4327916915C121332964 @default.
- W4327916915 hasConceptScore W4327916915C121864883 @default.
- W4327916915 hasConceptScore W4327916915C154945302 @default.
- W4327916915 hasConceptScore W4327916915C158622935 @default.
- W4327916915 hasConceptScore W4327916915C28826006 @default.
- W4327916915 hasConceptScore W4327916915C33923547 @default.
- W4327916915 hasConceptScore W4327916915C41008148 @default.
- W4327916915 hasConceptScore W4327916915C50644808 @default.
- W4327916915 hasConceptScore W4327916915C53810900 @default.
- W4327916915 hasConceptScore W4327916915C62520636 @default.
- W4327916915 hasConceptScore W4327916915C85084404 @default.
- W4327916915 hasConceptScore W4327916915C97355855 @default.
- W4327916915 hasLocation W43279169151 @default.
- W4327916915 hasOpenAccess W4327916915 @default.
- W4327916915 hasPrimaryLocation W43279169151 @default.
- W4327916915 hasRelatedWork W2003692981 @default.
- W4327916915 hasRelatedWork W2079707452 @default.
- W4327916915 hasRelatedWork W2355045487 @default.
- W4327916915 hasRelatedWork W2371928941 @default.
- W4327916915 hasRelatedWork W2386387936 @default.
- W4327916915 hasRelatedWork W2579974435 @default.
- W4327916915 hasRelatedWork W2899217644 @default.
- W4327916915 hasRelatedWork W3033558109 @default.
- W4327916915 hasRelatedWork W352735055 @default.
- W4327916915 hasRelatedWork W767948351 @default.
- W4327916915 isParatext "false" @default.
- W4327916915 isRetracted "false" @default.
- W4327916915 workType "article" @default.