Matches in SemOpenAlex for { <https://semopenalex.org/work/W4327926835> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4327926835 abstract "Recent years have seen increased interest in research on biometric template protection due to the widespread use of biometric authentication systems. For providing security to biometric templates, there is a procedure known as Fully Homomorphic Encryption that protects biometric templates from the malicious server environment. Users have more customization options with a biometric authentication system than a password or token. The most popular biometric modalities include fingerprints, iris scans, facial images, etc. Biometric modalities offer security on IoMT -based systems. Face recognition is one of the most often utilized biometric authentication methods in societal structure. Face recognition technology has made enormous strides in recent years. Here, we examine the viability of securing a database of iris templates using a methodology based on fully homomorphic Encryption. By directly matching templates in the encrypted domain, this framework is designed to protect confidentiality and restrict information from leaking from the templates while preserving their utility. We also investigate various classification techniques on machine learning models to achieve improved accuracy with shorter execution times. The aggregate verification vector assists in confirming the accuracy of the computed classification result, and the CKKS technique ensures confidentiality for the biometric templates. This study provides a plethora of information on fully homomorphic biometric authentication, containing a wide assortment of algorithms that satisfy homomorphic Encryption and various methods for extracting the biometric-related template." @default.
- W4327926835 created "2023-03-21" @default.
- W4327926835 creator A5002872643 @default.
- W4327926835 creator A5052200047 @default.
- W4327926835 date "2023-02-18" @default.
- W4327926835 modified "2023-10-16" @default.
- W4327926835 title "A Survey on Homomorphic Encryption for Biometrics Template Security Based on Machine Learning Models" @default.
- W4327926835 cites W1474963955 @default.
- W4327926835 cites W1798609567 @default.
- W4327926835 cites W2031533839 @default.
- W4327926835 cites W2108834246 @default.
- W4327926835 cites W2132172731 @default.
- W4327926835 cites W2177209050 @default.
- W4327926835 cites W2329914949 @default.
- W4327926835 cites W2557897873 @default.
- W4327926835 cites W2747565731 @default.
- W4327926835 cites W2767015783 @default.
- W4327926835 cites W2768174108 @default.
- W4327926835 cites W2801958627 @default.
- W4327926835 cites W2944346404 @default.
- W4327926835 cites W2979557494 @default.
- W4327926835 cites W3014777329 @default.
- W4327926835 cites W3015767938 @default.
- W4327926835 cites W3018474919 @default.
- W4327926835 cites W3045552396 @default.
- W4327926835 cites W3088634412 @default.
- W4327926835 cites W3107806822 @default.
- W4327926835 cites W3135658564 @default.
- W4327926835 cites W3175006004 @default.
- W4327926835 cites W3181551292 @default.
- W4327926835 cites W3184112201 @default.
- W4327926835 cites W3195146091 @default.
- W4327926835 cites W4210300416 @default.
- W4327926835 cites W4225377307 @default.
- W4327926835 cites W4232836212 @default.
- W4327926835 cites W4285238265 @default.
- W4327926835 cites W4290802460 @default.
- W4327926835 doi "https://doi.org/10.1109/sceecs57921.2023.10062968" @default.
- W4327926835 hasPublicationYear "2023" @default.
- W4327926835 type Work @default.
- W4327926835 citedByCount "0" @default.
- W4327926835 crossrefType "proceedings-article" @default.
- W4327926835 hasAuthorship W4327926835A5002872643 @default.
- W4327926835 hasAuthorship W4327926835A5052200047 @default.
- W4327926835 hasConcept C109297577 @default.
- W4327926835 hasConcept C124101348 @default.
- W4327926835 hasConcept C148417208 @default.
- W4327926835 hasConcept C148730421 @default.
- W4327926835 hasConcept C154945302 @default.
- W4327926835 hasConcept C158338273 @default.
- W4327926835 hasConcept C184297639 @default.
- W4327926835 hasConcept C199360897 @default.
- W4327926835 hasConcept C38652104 @default.
- W4327926835 hasConcept C41008148 @default.
- W4327926835 hasConcept C48145219 @default.
- W4327926835 hasConcept C82714645 @default.
- W4327926835 hasConceptScore W4327926835C109297577 @default.
- W4327926835 hasConceptScore W4327926835C124101348 @default.
- W4327926835 hasConceptScore W4327926835C148417208 @default.
- W4327926835 hasConceptScore W4327926835C148730421 @default.
- W4327926835 hasConceptScore W4327926835C154945302 @default.
- W4327926835 hasConceptScore W4327926835C158338273 @default.
- W4327926835 hasConceptScore W4327926835C184297639 @default.
- W4327926835 hasConceptScore W4327926835C199360897 @default.
- W4327926835 hasConceptScore W4327926835C38652104 @default.
- W4327926835 hasConceptScore W4327926835C41008148 @default.
- W4327926835 hasConceptScore W4327926835C48145219 @default.
- W4327926835 hasConceptScore W4327926835C82714645 @default.
- W4327926835 hasLocation W43279268351 @default.
- W4327926835 hasOpenAccess W4327926835 @default.
- W4327926835 hasPrimaryLocation W43279268351 @default.
- W4327926835 hasRelatedWork W1769662020 @default.
- W4327926835 hasRelatedWork W1893564517 @default.
- W4327926835 hasRelatedWork W2127331101 @default.
- W4327926835 hasRelatedWork W2152726786 @default.
- W4327926835 hasRelatedWork W2239458333 @default.
- W4327926835 hasRelatedWork W2246442035 @default.
- W4327926835 hasRelatedWork W2248971496 @default.
- W4327926835 hasRelatedWork W2564483406 @default.
- W4327926835 hasRelatedWork W3141575850 @default.
- W4327926835 hasRelatedWork W2504412559 @default.
- W4327926835 isParatext "false" @default.
- W4327926835 isRetracted "false" @default.
- W4327926835 workType "article" @default.