Matches in SemOpenAlex for { <https://semopenalex.org/work/W4327952021> ?p ?o ?g. }
- W4327952021 endingPage "44" @default.
- W4327952021 startingPage "44" @default.
- W4327952021 abstract "Nowadays, many people around the world cannot walk perfectly because of their knee problems. A knee-assistive device is one option to support walking for those with low or not enough knee muscle forces. Many research studies have created knee devices with control systems implementing different techniques and sensors. This study proposes an alternative version of the knee device control system without using too many actuators and sensors. It applies the machine learning and artificial stiffness control strategy (MLASCS) that uses one actuator combined with an encoder for estimating the amount of assistive support in a walking gait from the recorded gait data. The study recorded several gait data and analyzed knee moments, and then trained a k-nearest neighbor model using the knee angle and the angular velocity to classify a state in a gait cycle. This control strategy also implements instantaneous artificial stiffness (IAS), a control system that requires only knee angle in each state to determine the amount of supporting moment. After validating the model via simulation, the accuracy of the machine learning model is around 99.9% with the speed of 165 observers/s, and the walking effort is reduced by up to 60% in a single gait cycle." @default.
- W4327952021 created "2023-03-21" @default.
- W4327952021 creator A5065753192 @default.
- W4327952021 creator A5086288866 @default.
- W4327952021 date "2023-03-17" @default.
- W4327952021 modified "2023-10-01" @default.
- W4327952021 title "Estimation of Knee Assistive Moment in a Gait Cycle Using Knee Angle and Knee Angular Velocity through Machine Learning and Artificial Stiffness Control Strategy (MLASCS)" @default.
- W4327952021 cites W1498077263 @default.
- W4327952021 cites W1523496391 @default.
- W4327952021 cites W1565140245 @default.
- W4327952021 cites W1617087148 @default.
- W4327952021 cites W1825041585 @default.
- W4327952021 cites W1965852706 @default.
- W4327952021 cites W1968279094 @default.
- W4327952021 cites W1972620603 @default.
- W4327952021 cites W1981096042 @default.
- W4327952021 cites W1983319234 @default.
- W4327952021 cites W1984322858 @default.
- W4327952021 cites W1987166016 @default.
- W4327952021 cites W1996916507 @default.
- W4327952021 cites W2029028294 @default.
- W4327952021 cites W2033196499 @default.
- W4327952021 cites W2042090758 @default.
- W4327952021 cites W2052232537 @default.
- W4327952021 cites W2059153667 @default.
- W4327952021 cites W2069852708 @default.
- W4327952021 cites W2070278369 @default.
- W4327952021 cites W2077130544 @default.
- W4327952021 cites W2081220527 @default.
- W4327952021 cites W2081590984 @default.
- W4327952021 cites W2085730950 @default.
- W4327952021 cites W2090886982 @default.
- W4327952021 cites W2094526935 @default.
- W4327952021 cites W2101068518 @default.
- W4327952021 cites W2108775281 @default.
- W4327952021 cites W2112742938 @default.
- W4327952021 cites W2126728198 @default.
- W4327952021 cites W2136425584 @default.
- W4327952021 cites W2140809274 @default.
- W4327952021 cites W2204488106 @default.
- W4327952021 cites W2398912470 @default.
- W4327952021 cites W2417845770 @default.
- W4327952021 cites W2492063278 @default.
- W4327952021 cites W2513139564 @default.
- W4327952021 cites W2562068770 @default.
- W4327952021 cites W2587489590 @default.
- W4327952021 cites W2588340726 @default.
- W4327952021 cites W2591710456 @default.
- W4327952021 cites W2592739395 @default.
- W4327952021 cites W2598477026 @default.
- W4327952021 cites W2602396095 @default.
- W4327952021 cites W2614919192 @default.
- W4327952021 cites W2742814354 @default.
- W4327952021 cites W2743710218 @default.
- W4327952021 cites W2743886640 @default.
- W4327952021 cites W2744879314 @default.
- W4327952021 cites W2746353924 @default.
- W4327952021 cites W2755620400 @default.
- W4327952021 cites W2766427086 @default.
- W4327952021 cites W2769877796 @default.
- W4327952021 cites W2772205445 @default.
- W4327952021 cites W2773727201 @default.
- W4327952021 cites W2783104348 @default.
- W4327952021 cites W2790679291 @default.
- W4327952021 cites W2807533077 @default.
- W4327952021 cites W2883315882 @default.
- W4327952021 cites W2886880902 @default.
- W4327952021 cites W2887329358 @default.
- W4327952021 cites W2888340064 @default.
- W4327952021 cites W2909237169 @default.
- W4327952021 cites W2959173243 @default.
- W4327952021 cites W2992884538 @default.
- W4327952021 cites W4205806410 @default.
- W4327952021 cites W4211003818 @default.
- W4327952021 cites W4281662892 @default.
- W4327952021 cites W4296259824 @default.
- W4327952021 cites W4306947767 @default.
- W4327952021 doi "https://doi.org/10.3390/robotics12020044" @default.
- W4327952021 hasPublicationYear "2023" @default.
- W4327952021 type Work @default.
- W4327952021 citedByCount "1" @default.
- W4327952021 countsByYear W43279520212023 @default.
- W4327952021 crossrefType "journal-article" @default.
- W4327952021 hasAuthorship W4327952021A5065753192 @default.
- W4327952021 hasAuthorship W4327952021A5086288866 @default.
- W4327952021 hasBestOaLocation W43279520211 @default.
- W4327952021 hasConcept C121332964 @default.
- W4327952021 hasConcept C127413603 @default.
- W4327952021 hasConcept C141071460 @default.
- W4327952021 hasConcept C151800584 @default.
- W4327952021 hasConcept C154945302 @default.
- W4327952021 hasConcept C172707124 @default.
- W4327952021 hasConcept C179254644 @default.
- W4327952021 hasConcept C2775924081 @default.
- W4327952021 hasConcept C2779372316 @default.
- W4327952021 hasConcept C2908736133 @default.
- W4327952021 hasConcept C2985215115 @default.
- W4327952021 hasConcept C39920418 @default.