Matches in SemOpenAlex for { <https://semopenalex.org/work/W4327960046> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4327960046 endingPage "e14835" @default.
- W4327960046 startingPage "e14835" @default.
- W4327960046 abstract "Brain functional network (BFN) analysis has become a popular technique for identifying neurological/mental diseases. Due to the fact that BFN is a graph, a graph convolutional network (GCN) can be naturally used in the classification of BFN. Different from traditional methods that directly use the adjacency matrices of BFNs to train a classifier, GCN requires an additional input-node features. To our best knowledge, however, there is no systematic study to analyze their influence on the performance of GCN-based brain disorder classification. Therefore, in this study, we conduct an empirical study on various node feature measures, including (1) original fMRI signals, (2) one-hot encoding, (3) node statistics, (4) node correlation, and (5) their combination. Experimental results on two benchmark databases show that different node feature inputs to GCN significantly affect the brain disease classification performance, and node correlation usually contributes higher accuracy compared to original signals and manually extracted statistical features." @default.
- W4327960046 created "2023-03-21" @default.
- W4327960046 creator A5006333473 @default.
- W4327960046 creator A5060413120 @default.
- W4327960046 creator A5088423634 @default.
- W4327960046 date "2023-03-20" @default.
- W4327960046 modified "2023-10-14" @default.
- W4327960046 title "The effect of node features on GCN-based brain network classification: an empirical study" @default.
- W4327960046 cites W2070127246 @default.
- W4327960046 cites W2095491050 @default.
- W4327960046 cites W2337323496 @default.
- W4327960046 cites W2562576330 @default.
- W4327960046 cites W2769544142 @default.
- W4327960046 cites W2806489700 @default.
- W4327960046 cites W2807150694 @default.
- W4327960046 cites W2890996272 @default.
- W4327960046 cites W3006025189 @default.
- W4327960046 cites W3087257704 @default.
- W4327960046 cites W3116651531 @default.
- W4327960046 cites W3187525041 @default.
- W4327960046 cites W4205962442 @default.
- W4327960046 cites W4206714166 @default.
- W4327960046 cites W4211028654 @default.
- W4327960046 cites W4235019172 @default.
- W4327960046 cites W4283716944 @default.
- W4327960046 cites W4292684874 @default.
- W4327960046 cites W4296686664 @default.
- W4327960046 doi "https://doi.org/10.7717/peerj.14835" @default.
- W4327960046 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36967986" @default.
- W4327960046 hasPublicationYear "2023" @default.
- W4327960046 type Work @default.
- W4327960046 citedByCount "0" @default.
- W4327960046 crossrefType "journal-article" @default.
- W4327960046 hasAuthorship W4327960046A5006333473 @default.
- W4327960046 hasAuthorship W4327960046A5060413120 @default.
- W4327960046 hasAuthorship W4327960046A5088423634 @default.
- W4327960046 hasBestOaLocation W43279600461 @default.
- W4327960046 hasConcept C117220453 @default.
- W4327960046 hasConcept C127413603 @default.
- W4327960046 hasConcept C132525143 @default.
- W4327960046 hasConcept C138885662 @default.
- W4327960046 hasConcept C153180895 @default.
- W4327960046 hasConcept C154945302 @default.
- W4327960046 hasConcept C180356752 @default.
- W4327960046 hasConcept C2524010 @default.
- W4327960046 hasConcept C2776401178 @default.
- W4327960046 hasConcept C33923547 @default.
- W4327960046 hasConcept C41008148 @default.
- W4327960046 hasConcept C41895202 @default.
- W4327960046 hasConcept C62611344 @default.
- W4327960046 hasConcept C66938386 @default.
- W4327960046 hasConcept C80444323 @default.
- W4327960046 hasConcept C95623464 @default.
- W4327960046 hasConceptScore W4327960046C117220453 @default.
- W4327960046 hasConceptScore W4327960046C127413603 @default.
- W4327960046 hasConceptScore W4327960046C132525143 @default.
- W4327960046 hasConceptScore W4327960046C138885662 @default.
- W4327960046 hasConceptScore W4327960046C153180895 @default.
- W4327960046 hasConceptScore W4327960046C154945302 @default.
- W4327960046 hasConceptScore W4327960046C180356752 @default.
- W4327960046 hasConceptScore W4327960046C2524010 @default.
- W4327960046 hasConceptScore W4327960046C2776401178 @default.
- W4327960046 hasConceptScore W4327960046C33923547 @default.
- W4327960046 hasConceptScore W4327960046C41008148 @default.
- W4327960046 hasConceptScore W4327960046C41895202 @default.
- W4327960046 hasConceptScore W4327960046C62611344 @default.
- W4327960046 hasConceptScore W4327960046C66938386 @default.
- W4327960046 hasConceptScore W4327960046C80444323 @default.
- W4327960046 hasConceptScore W4327960046C95623464 @default.
- W4327960046 hasFunder F4320321001 @default.
- W4327960046 hasFunder F4320324174 @default.
- W4327960046 hasLocation W43279600461 @default.
- W4327960046 hasLocation W43279600462 @default.
- W4327960046 hasLocation W43279600463 @default.
- W4327960046 hasLocation W43279600464 @default.
- W4327960046 hasOpenAccess W4327960046 @default.
- W4327960046 hasPrimaryLocation W43279600461 @default.
- W4327960046 hasRelatedWork W2167582322 @default.
- W4327960046 hasRelatedWork W2382607599 @default.
- W4327960046 hasRelatedWork W2400519873 @default.
- W4327960046 hasRelatedWork W2546942002 @default.
- W4327960046 hasRelatedWork W2563096758 @default.
- W4327960046 hasRelatedWork W2742991909 @default.
- W4327960046 hasRelatedWork W2970216048 @default.
- W4327960046 hasRelatedWork W2972035100 @default.
- W4327960046 hasRelatedWork W4386053843 @default.
- W4327960046 hasRelatedWork W3158004940 @default.
- W4327960046 hasVolume "11" @default.
- W4327960046 isParatext "false" @default.
- W4327960046 isRetracted "false" @default.
- W4327960046 workType "article" @default.