Matches in SemOpenAlex for { <https://semopenalex.org/work/W4327974600> ?p ?o ?g. }
- W4327974600 endingPage "1167" @default.
- W4327974600 startingPage "1167" @default.
- W4327974600 abstract "The aim of this study was to investigate the usefulness of radiomics in the absence of well-defined standard guidelines. Specifically, we extracted radiomics features from multicenter computed tomography (CT) images to differentiate between the four histopathological subtypes of non-small-cell lung carcinoma (NSCLC). In addition, the results that varied with the radiomics model were compared. We investigated the presence of the batch effects and the impact of feature harmonization on the models' performance. Moreover, the question on how the training dataset composition influenced the selected feature subsets and, consequently, the model's performance was also investigated. Therefore, through combining data from the two publicly available datasets, this study involves a total of 152 squamous cell carcinoma (SCC), 106 large cell carcinoma (LCC), 150 adenocarcinoma (ADC), and 58 no other specified (NOS). Through the matRadiomics tool, which is an example of Image Biomarker Standardization Initiative (IBSI) compliant software, 1781 radiomics features were extracted from each of the malignant lesions that were identified in CT images. After batch analysis and feature harmonization, which were based on the ComBat tool and were integrated in matRadiomics, the datasets (the harmonized and the non-harmonized) were given as an input to a machine learning modeling pipeline. The following steps were articulated: (i) training-set/test-set splitting (80/20); (ii) a Kruskal-Wallis analysis and LASSO linear regression for the feature selection; (iii) model training; (iv) a model validation and hyperparameter optimization; and (v) model testing. Model optimization consisted of a 5-fold cross-validated Bayesian optimization, repeated ten times (inner loop). The whole pipeline was repeated 10 times (outer loop) with six different machine learning classification algorithms. Moreover, the stability of the feature selection was evaluated. Results showed that the batch effects were present even if the voxels were resampled to an isotropic form and whether feature harmonization correctly removed them, even though the models' performances decreased. Moreover, the results showed that a low accuracy (61.41%) was reached when differentiating between the four subtypes, even though a high average area under curve (AUC) was reached (0.831). Further, a NOS subtype was classified as almost completely correct (true positive rate ~90%). The accuracy increased (77.25%) when only the SCC and ADC subtypes were considered, as well as when a high AUC (0.821) was obtained-although harmonization decreased the accuracy to 58%. Moreover, the features that contributed the most to models' performance were those extracted from wavelet decomposed and Laplacian of Gaussian (LoG) filtered images and they belonged to the texture feature class.. In conclusion, we showed that our multicenter data were affected by batch effects, that they could significantly alter the models' performance, and that feature harmonization correctly removed them. Although wavelet features seemed to be the most informative features, an absolute subset could not be identified since it changed depending on the training/testing splitting. Moreover, performance was influenced by the chosen dataset and by the machine learning methods, which could reach a high accuracy in binary classification tasks, but could underperform in multiclass problems. It is, therefore, essential that the scientific community propose a more systematic radiomics approach, focusing on multicenter studies, with clear and solid guidelines to facilitate the translation of radiomics to clinical practice." @default.
- W4327974600 created "2023-03-21" @default.
- W4327974600 creator A5006558800 @default.
- W4327974600 creator A5008498339 @default.
- W4327974600 creator A5011638733 @default.
- W4327974600 creator A5023090551 @default.
- W4327974600 creator A5024333391 @default.
- W4327974600 creator A5069478037 @default.
- W4327974600 date "2023-03-18" @default.
- W4327974600 modified "2023-10-16" @default.
- W4327974600 title "Phenotyping the Histopathological Subtypes of Non-Small-Cell Lung Carcinoma: How Beneficial Is Radiomics?" @default.
- W4327974600 cites W2067959276 @default.
- W4327974600 cites W2103004421 @default.
- W4327974600 cites W2107665951 @default.
- W4327974600 cites W2251438188 @default.
- W4327974600 cites W2333277922 @default.
- W4327974600 cites W2753416097 @default.
- W4327974600 cites W2755044641 @default.
- W4327974600 cites W2767128594 @default.
- W4327974600 cites W2773826958 @default.
- W4327974600 cites W2907772920 @default.
- W4327974600 cites W2908536554 @default.
- W4327974600 cites W2908672892 @default.
- W4327974600 cites W2913754119 @default.
- W4327974600 cites W2920589322 @default.
- W4327974600 cites W2940053266 @default.
- W4327974600 cites W2947876556 @default.
- W4327974600 cites W2950086191 @default.
- W4327974600 cites W2963883833 @default.
- W4327974600 cites W2964471257 @default.
- W4327974600 cites W2964868046 @default.
- W4327974600 cites W2985260969 @default.
- W4327974600 cites W2998789541 @default.
- W4327974600 cites W2999701940 @default.
- W4327974600 cites W3006104185 @default.
- W4327974600 cites W3040676006 @default.
- W4327974600 cites W3048173156 @default.
- W4327974600 cites W3048802680 @default.
- W4327974600 cites W3082253829 @default.
- W4327974600 cites W3090519073 @default.
- W4327974600 cites W3106266685 @default.
- W4327974600 cites W3119494456 @default.
- W4327974600 cites W3127850120 @default.
- W4327974600 cites W3129007422 @default.
- W4327974600 cites W3159332717 @default.
- W4327974600 cites W3159807469 @default.
- W4327974600 cites W3162335705 @default.
- W4327974600 cites W3175999952 @default.
- W4327974600 cites W3194507152 @default.
- W4327974600 cites W3210024870 @default.
- W4327974600 cites W3215167312 @default.
- W4327974600 cites W4200133544 @default.
- W4327974600 cites W4206841660 @default.
- W4327974600 cites W4210438451 @default.
- W4327974600 cites W4224249244 @default.
- W4327974600 cites W4285717592 @default.
- W4327974600 cites W4286586888 @default.
- W4327974600 cites W4292247643 @default.
- W4327974600 cites W4294123628 @default.
- W4327974600 cites W4298624911 @default.
- W4327974600 cites W4309852369 @default.
- W4327974600 cites W4311442013 @default.
- W4327974600 cites W4315607517 @default.
- W4327974600 cites W4317702979 @default.
- W4327974600 cites W842354779 @default.
- W4327974600 doi "https://doi.org/10.3390/diagnostics13061167" @default.
- W4327974600 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36980475" @default.
- W4327974600 hasPublicationYear "2023" @default.
- W4327974600 type Work @default.
- W4327974600 citedByCount "3" @default.
- W4327974600 countsByYear W43279746002023 @default.
- W4327974600 crossrefType "journal-article" @default.
- W4327974600 hasAuthorship W4327974600A5006558800 @default.
- W4327974600 hasAuthorship W4327974600A5008498339 @default.
- W4327974600 hasAuthorship W4327974600A5011638733 @default.
- W4327974600 hasAuthorship W4327974600A5023090551 @default.
- W4327974600 hasAuthorship W4327974600A5024333391 @default.
- W4327974600 hasAuthorship W4327974600A5069478037 @default.
- W4327974600 hasBestOaLocation W43279746001 @default.
- W4327974600 hasConcept C119857082 @default.
- W4327974600 hasConcept C136764020 @default.
- W4327974600 hasConcept C138885662 @default.
- W4327974600 hasConcept C148483581 @default.
- W4327974600 hasConcept C153180895 @default.
- W4327974600 hasConcept C154945302 @default.
- W4327974600 hasConcept C27181475 @default.
- W4327974600 hasConcept C2776401178 @default.
- W4327974600 hasConcept C2778559731 @default.
- W4327974600 hasConcept C37616216 @default.
- W4327974600 hasConcept C41008148 @default.
- W4327974600 hasConcept C41895202 @default.
- W4327974600 hasConcept C8642999 @default.
- W4327974600 hasConceptScore W4327974600C119857082 @default.
- W4327974600 hasConceptScore W4327974600C136764020 @default.
- W4327974600 hasConceptScore W4327974600C138885662 @default.
- W4327974600 hasConceptScore W4327974600C148483581 @default.
- W4327974600 hasConceptScore W4327974600C153180895 @default.
- W4327974600 hasConceptScore W4327974600C154945302 @default.