Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328006244> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4328006244 abstract "The rapid development of the Internet and social networks deepens the connection between people and bring more rich information. To solve the problems of information overload, many recommendation algorithms have flourished, such as collaborative filtering algorithms, social recommendation algorithms, and meta-path based algorithms. The common characteristic of these algorithms is that they introduce some additional information, e.g., user friendship or item category, to improve the accuracy of recommendations. However, how to fuse such different types of information effectively remains challenging: how to aggregate specific information within each type of relations and how to combine various information among different types of relations. To solve the aforementioned problems, we propose a graph-level information fusion recommendation algorithm, i.e., MGRec (Multi-Graph Recommendation). Firstly, it models three types of relations, that are, ratings between users and items, friendships between users, and categories between items, as sub-graphs. Then, it makes information aggregation within each sub-graph, using personalized feature extraction methods like GCN and attention mechanism. Finally, it makes information combination among sub-graphs, which is implemented by a gate mechanism. Extensive experiments are conducted on two real-world datasets and results demonstrate the irreplaceability of MGRec." @default.
- W4328006244 created "2023-03-22" @default.
- W4328006244 creator A5018175815 @default.
- W4328006244 creator A5052229619 @default.
- W4328006244 creator A5063626071 @default.
- W4328006244 creator A5074071932 @default.
- W4328006244 creator A5081827896 @default.
- W4328006244 creator A5083721861 @default.
- W4328006244 date "2022-08-01" @default.
- W4328006244 modified "2023-09-26" @default.
- W4328006244 title "MGRec: Multi-Graph Fusion for Recommendation" @default.
- W4328006244 cites W1902027874 @default.
- W4328006244 cites W1966472199 @default.
- W4328006244 cites W2054141820 @default.
- W4328006244 cites W2119825970 @default.
- W4328006244 cites W2130354913 @default.
- W4328006244 cites W2135598826 @default.
- W4328006244 cites W2144487656 @default.
- W4328006244 cites W2229809859 @default.
- W4328006244 cites W2509678028 @default.
- W4328006244 cites W2739946816 @default.
- W4328006244 cites W2741462375 @default.
- W4328006244 cites W2753074643 @default.
- W4328006244 cites W2783666221 @default.
- W4328006244 cites W2798908418 @default.
- W4328006244 cites W2803478834 @default.
- W4328006244 cites W2809112621 @default.
- W4328006244 cites W2891146023 @default.
- W4328006244 cites W2904362786 @default.
- W4328006244 cites W2914721378 @default.
- W4328006244 cites W2951626319 @default.
- W4328006244 cites W2962756421 @default.
- W4328006244 cites W2963146368 @default.
- W4328006244 cites W2963707260 @default.
- W4328006244 cites W2963902947 @default.
- W4328006244 cites W2965857891 @default.
- W4328006244 cites W2981822952 @default.
- W4328006244 cites W2987050385 @default.
- W4328006244 cites W3014972541 @default.
- W4328006244 cites W3153432523 @default.
- W4328006244 cites W4288083766 @default.
- W4328006244 cites W4289751797 @default.
- W4328006244 doi "https://doi.org/10.1109/bigcom57025.2022.00041" @default.
- W4328006244 hasPublicationYear "2022" @default.
- W4328006244 type Work @default.
- W4328006244 citedByCount "0" @default.
- W4328006244 crossrefType "proceedings-article" @default.
- W4328006244 hasAuthorship W4328006244A5018175815 @default.
- W4328006244 hasAuthorship W4328006244A5052229619 @default.
- W4328006244 hasAuthorship W4328006244A5063626071 @default.
- W4328006244 hasAuthorship W4328006244A5074071932 @default.
- W4328006244 hasAuthorship W4328006244A5081827896 @default.
- W4328006244 hasAuthorship W4328006244A5083721861 @default.
- W4328006244 hasConcept C110875604 @default.
- W4328006244 hasConcept C124101348 @default.
- W4328006244 hasConcept C132525143 @default.
- W4328006244 hasConcept C136764020 @default.
- W4328006244 hasConcept C186625053 @default.
- W4328006244 hasConcept C21569690 @default.
- W4328006244 hasConcept C23123220 @default.
- W4328006244 hasConcept C41008148 @default.
- W4328006244 hasConcept C557471498 @default.
- W4328006244 hasConcept C80444323 @default.
- W4328006244 hasConceptScore W4328006244C110875604 @default.
- W4328006244 hasConceptScore W4328006244C124101348 @default.
- W4328006244 hasConceptScore W4328006244C132525143 @default.
- W4328006244 hasConceptScore W4328006244C136764020 @default.
- W4328006244 hasConceptScore W4328006244C186625053 @default.
- W4328006244 hasConceptScore W4328006244C21569690 @default.
- W4328006244 hasConceptScore W4328006244C23123220 @default.
- W4328006244 hasConceptScore W4328006244C41008148 @default.
- W4328006244 hasConceptScore W4328006244C557471498 @default.
- W4328006244 hasConceptScore W4328006244C80444323 @default.
- W4328006244 hasLocation W43280062441 @default.
- W4328006244 hasOpenAccess W4328006244 @default.
- W4328006244 hasPrimaryLocation W43280062441 @default.
- W4328006244 hasRelatedWork W1707777091 @default.
- W4328006244 hasRelatedWork W2074618601 @default.
- W4328006244 hasRelatedWork W2365387480 @default.
- W4328006244 hasRelatedWork W2785485252 @default.
- W4328006244 hasRelatedWork W2944402528 @default.
- W4328006244 hasRelatedWork W3431530 @default.
- W4328006244 hasRelatedWork W4287281996 @default.
- W4328006244 hasRelatedWork W4297823578 @default.
- W4328006244 hasRelatedWork W4327615368 @default.
- W4328006244 hasRelatedWork W76049015 @default.
- W4328006244 isParatext "false" @default.
- W4328006244 isRetracted "false" @default.
- W4328006244 workType "article" @default.