Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328006255> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4328006255 abstract "Human micro-expressions are difficult to detect, and their duration is approximately 1/25 to 1/5 s. Recognition and research on micro-expression can help determine the real psy-chological state of human beings, and the application scenarios are very wide. In this research, in addition to computer vision knowledge, a deep convolutional neural network for detecting facial key points and a deep learning method for extracting optical flow features were combined to construct a dual-network micro-expression recognition model based on optical flow features. The facial region of interest was divided in accordance with the key points of the face, and the optical flow features in the regions of interest were statistically analyzed. Because the original optical flow features contained in the micro-expression video clips have many dimension and high redundancy, an improved optical flow direction histogram was adopted. The histogram of oriented optical flow removed redundant features and enhanced the ability of optical flow features to describe micro-expression. Finally, the classification algorithm of the support vector machine was used to realize micro-expression recognition. The experimental results on the video-based facial micro-macro-expression database MMEW showed that the dual-network model constructed here improved the accuracy of micro-expression recognition and better completed the task of micro-expression recognition." @default.
- W4328006255 created "2023-03-22" @default.
- W4328006255 creator A5019560977 @default.
- W4328006255 creator A5044367029 @default.
- W4328006255 creator A5052030057 @default.
- W4328006255 creator A5053726050 @default.
- W4328006255 creator A5054510847 @default.
- W4328006255 creator A5070154781 @default.
- W4328006255 date "2022-08-01" @default.
- W4328006255 modified "2023-09-23" @default.
- W4328006255 title "A dual-network micro-expression recognition model based on optical flow features" @default.
- W4328006255 cites W2119586505 @default.
- W4328006255 cites W2139916508 @default.
- W4328006255 cites W2342983306 @default.
- W4328006255 cites W2603775219 @default.
- W4328006255 cites W2808064875 @default.
- W4328006255 cites W2898372871 @default.
- W4328006255 cites W2911554103 @default.
- W4328006255 cites W2962162344 @default.
- W4328006255 cites W2962802777 @default.
- W4328006255 cites W2990604823 @default.
- W4328006255 cites W2991302619 @default.
- W4328006255 cites W3035383616 @default.
- W4328006255 cites W3080663431 @default.
- W4328006255 cites W3103539074 @default.
- W4328006255 cites W3106574292 @default.
- W4328006255 cites W3137274787 @default.
- W4328006255 cites W3192024284 @default.
- W4328006255 doi "https://doi.org/10.1109/bigcom57025.2022.00033" @default.
- W4328006255 hasPublicationYear "2022" @default.
- W4328006255 type Work @default.
- W4328006255 citedByCount "0" @default.
- W4328006255 crossrefType "proceedings-article" @default.
- W4328006255 hasAuthorship W4328006255A5019560977 @default.
- W4328006255 hasAuthorship W4328006255A5044367029 @default.
- W4328006255 hasAuthorship W4328006255A5052030057 @default.
- W4328006255 hasAuthorship W4328006255A5053726050 @default.
- W4328006255 hasAuthorship W4328006255A5054510847 @default.
- W4328006255 hasAuthorship W4328006255A5070154781 @default.
- W4328006255 hasConcept C115961682 @default.
- W4328006255 hasConcept C12267149 @default.
- W4328006255 hasConcept C153180895 @default.
- W4328006255 hasConcept C154945302 @default.
- W4328006255 hasConcept C155542232 @default.
- W4328006255 hasConcept C195704467 @default.
- W4328006255 hasConcept C199360897 @default.
- W4328006255 hasConcept C31510193 @default.
- W4328006255 hasConcept C31972630 @default.
- W4328006255 hasConcept C41008148 @default.
- W4328006255 hasConcept C52622490 @default.
- W4328006255 hasConcept C53533937 @default.
- W4328006255 hasConcept C81363708 @default.
- W4328006255 hasConcept C90559484 @default.
- W4328006255 hasConceptScore W4328006255C115961682 @default.
- W4328006255 hasConceptScore W4328006255C12267149 @default.
- W4328006255 hasConceptScore W4328006255C153180895 @default.
- W4328006255 hasConceptScore W4328006255C154945302 @default.
- W4328006255 hasConceptScore W4328006255C155542232 @default.
- W4328006255 hasConceptScore W4328006255C195704467 @default.
- W4328006255 hasConceptScore W4328006255C199360897 @default.
- W4328006255 hasConceptScore W4328006255C31510193 @default.
- W4328006255 hasConceptScore W4328006255C31972630 @default.
- W4328006255 hasConceptScore W4328006255C41008148 @default.
- W4328006255 hasConceptScore W4328006255C52622490 @default.
- W4328006255 hasConceptScore W4328006255C53533937 @default.
- W4328006255 hasConceptScore W4328006255C81363708 @default.
- W4328006255 hasConceptScore W4328006255C90559484 @default.
- W4328006255 hasLocation W43280062551 @default.
- W4328006255 hasOpenAccess W4328006255 @default.
- W4328006255 hasPrimaryLocation W43280062551 @default.
- W4328006255 hasRelatedWork W1981015757 @default.
- W4328006255 hasRelatedWork W2026250640 @default.
- W4328006255 hasRelatedWork W2126100045 @default.
- W4328006255 hasRelatedWork W2363530787 @default.
- W4328006255 hasRelatedWork W2977314777 @default.
- W4328006255 hasRelatedWork W2995914718 @default.
- W4328006255 hasRelatedWork W3000095492 @default.
- W4328006255 hasRelatedWork W3001413891 @default.
- W4328006255 hasRelatedWork W3018375584 @default.
- W4328006255 hasRelatedWork W3026989519 @default.
- W4328006255 isParatext "false" @default.
- W4328006255 isRetracted "false" @default.
- W4328006255 workType "article" @default.