Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328006352> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4328006352 abstract "Since food culture and the Internet technology has developed, it is popular to share food photos through the Internet. How to mine the useful information contained in these food images has posed a challenge to us. Image-based food recognition technology has a broad application prospect. It can not only quickly identify food category, ingredients and cooking methods, providing people with relevant recipe information, but also predict food nutrition information, which can be used in nutritional analysis, scientific dietary matching and medical health management. Considering the above problems, in this paper we conduct research and analysis from two aspects: dataset construction and recognition model design. The main contributions of this paper are as follows: (1) Since there is an absence of public datasets which contain both food cooking methods and calorie information, we construct a food dataset with rich food attributes. (2) Existing food calorie prediction methods usually need to go through multiple calculation steps while ignoring the influence of cooking methods. In addition, the mutual occlusion of ingredients, the changes in shape, color and texture of ingredients after different cooking methods, and the similarity of different types of food in terms of shape and color, all make the food image recognition tasks hard to solve.To solve these problems, a food recognition model based on multi-task attention network is proposed." @default.
- W4328006352 created "2023-03-22" @default.
- W4328006352 creator A5017048790 @default.
- W4328006352 creator A5025916930 @default.
- W4328006352 creator A5032891611 @default.
- W4328006352 creator A5049462948 @default.
- W4328006352 date "2022-08-01" @default.
- W4328006352 modified "2023-09-23" @default.
- W4328006352 title "Food Recognition Model Based on Deep Learning and Attention Mechanism" @default.
- W4328006352 cites W12634471 @default.
- W4328006352 cites W1905829557 @default.
- W4328006352 cites W1982918230 @default.
- W4328006352 cites W2057352599 @default.
- W4328006352 cites W2087082746 @default.
- W4328006352 cites W2108598243 @default.
- W4328006352 cites W2112796928 @default.
- W4328006352 cites W2132870739 @default.
- W4328006352 cites W2151103935 @default.
- W4328006352 cites W2161969291 @default.
- W4328006352 cites W2200124539 @default.
- W4328006352 cites W2206370378 @default.
- W4328006352 cites W2293499654 @default.
- W4328006352 cites W2419522548 @default.
- W4328006352 cites W2466671568 @default.
- W4328006352 cites W2526198870 @default.
- W4328006352 cites W2530389408 @default.
- W4328006352 cites W2531023315 @default.
- W4328006352 cites W2531634031 @default.
- W4328006352 cites W2737041163 @default.
- W4328006352 cites W2737449799 @default.
- W4328006352 cites W2765652171 @default.
- W4328006352 cites W2765707332 @default.
- W4328006352 cites W2794393374 @default.
- W4328006352 cites W2954801189 @default.
- W4328006352 cites W2960416371 @default.
- W4328006352 cites W2963997278 @default.
- W4328006352 doi "https://doi.org/10.1109/bigcom57025.2022.00048" @default.
- W4328006352 hasPublicationYear "2022" @default.
- W4328006352 type Work @default.
- W4328006352 citedByCount "1" @default.
- W4328006352 countsByYear W43280063522023 @default.
- W4328006352 crossrefType "proceedings-article" @default.
- W4328006352 hasAuthorship W4328006352A5017048790 @default.
- W4328006352 hasAuthorship W4328006352A5025916930 @default.
- W4328006352 hasAuthorship W4328006352A5032891611 @default.
- W4328006352 hasAuthorship W4328006352A5049462948 @default.
- W4328006352 hasConcept C103278499 @default.
- W4328006352 hasConcept C108583219 @default.
- W4328006352 hasConcept C110875604 @default.
- W4328006352 hasConcept C115961682 @default.
- W4328006352 hasConcept C119857082 @default.
- W4328006352 hasConcept C136764020 @default.
- W4328006352 hasConcept C154945302 @default.
- W4328006352 hasConcept C199360897 @default.
- W4328006352 hasConcept C2780801425 @default.
- W4328006352 hasConcept C41008148 @default.
- W4328006352 hasConceptScore W4328006352C103278499 @default.
- W4328006352 hasConceptScore W4328006352C108583219 @default.
- W4328006352 hasConceptScore W4328006352C110875604 @default.
- W4328006352 hasConceptScore W4328006352C115961682 @default.
- W4328006352 hasConceptScore W4328006352C119857082 @default.
- W4328006352 hasConceptScore W4328006352C136764020 @default.
- W4328006352 hasConceptScore W4328006352C154945302 @default.
- W4328006352 hasConceptScore W4328006352C199360897 @default.
- W4328006352 hasConceptScore W4328006352C2780801425 @default.
- W4328006352 hasConceptScore W4328006352C41008148 @default.
- W4328006352 hasLocation W43280063521 @default.
- W4328006352 hasOpenAccess W4328006352 @default.
- W4328006352 hasPrimaryLocation W43280063521 @default.
- W4328006352 hasRelatedWork W2922457425 @default.
- W4328006352 hasRelatedWork W3014300295 @default.
- W4328006352 hasRelatedWork W3164822677 @default.
- W4328006352 hasRelatedWork W4223943233 @default.
- W4328006352 hasRelatedWork W4225161397 @default.
- W4328006352 hasRelatedWork W4250304930 @default.
- W4328006352 hasRelatedWork W4309045103 @default.
- W4328006352 hasRelatedWork W4312200629 @default.
- W4328006352 hasRelatedWork W4360585206 @default.
- W4328006352 hasRelatedWork W4364306694 @default.
- W4328006352 isParatext "false" @default.
- W4328006352 isRetracted "false" @default.
- W4328006352 workType "article" @default.