Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328007026> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4328007026 abstract "Breast cancer is the most diagnosed type of cancer as per the data that is collected by the World Health Organization (WHO) within the past few years. Over 600,000 deaths were recorded in 2021 due to breast cancer. Breast cancer screening is done using two-dimensional (2D) and three-dimensional (3D) mammography, but MRIs and Ultrasounds are also used in certain conditions. The diagnosis from the screenings is not always accurate as a practitioner must physically look at the digital images to find any signs of cancer. Approximately, each diagnosis has a variable chance of a false-positive or a false-negative. Many CAD (computer-aided detection) systems have been developed for the assistance of a practitioner with the diagnosis. However, in the past years, Deep Neural Networks (DNN) have seen a spike and the models are being used to aid breast cancer screening. Data shows a possibility of reaching Area under the curve (AUC) values as high as 0.99 under ideal conditions when the training dataset is cleaned of noise and properly pre-processed and in some studies, the accuracy and sensitivity are even compared to that of a practitioner’s, with the DNN model outperforming in numbers across the board. After performing a literature review on similar work, we have trained a model of our own on a publicly available dataset (MIAS) reaching promising results of an AUC of 0.87 and an Accuracy of 0.88 with the initial model built on a DenseNet121 architecture." @default.
- W4328007026 created "2023-03-22" @default.
- W4328007026 creator A5004413524 @default.
- W4328007026 creator A5027523784 @default.
- W4328007026 creator A5032704971 @default.
- W4328007026 creator A5041330941 @default.
- W4328007026 creator A5053211526 @default.
- W4328007026 date "2023-01-24" @default.
- W4328007026 modified "2023-10-16" @default.
- W4328007026 title "Analyzing the Classification Performance of DenseNet121 on Pre-processsed MIAS Dataset" @default.
- W4328007026 cites W2802528458 @default.
- W4328007026 cites W2999243731 @default.
- W4328007026 cites W3118741877 @default.
- W4328007026 cites W3121017144 @default.
- W4328007026 cites W3163936961 @default.
- W4328007026 cites W3173800204 @default.
- W4328007026 cites W4205205046 @default.
- W4328007026 cites W4280609742 @default.
- W4328007026 doi "https://doi.org/10.1109/gcwot57803.2023.10064663" @default.
- W4328007026 hasPublicationYear "2023" @default.
- W4328007026 type Work @default.
- W4328007026 citedByCount "0" @default.
- W4328007026 crossrefType "proceedings-article" @default.
- W4328007026 hasAuthorship W4328007026A5004413524 @default.
- W4328007026 hasAuthorship W4328007026A5027523784 @default.
- W4328007026 hasAuthorship W4328007026A5032704971 @default.
- W4328007026 hasAuthorship W4328007026A5041330941 @default.
- W4328007026 hasAuthorship W4328007026A5053211526 @default.
- W4328007026 hasConcept C115961682 @default.
- W4328007026 hasConcept C119857082 @default.
- W4328007026 hasConcept C121608353 @default.
- W4328007026 hasConcept C126322002 @default.
- W4328007026 hasConcept C127413603 @default.
- W4328007026 hasConcept C153180895 @default.
- W4328007026 hasConcept C154945302 @default.
- W4328007026 hasConcept C21200559 @default.
- W4328007026 hasConcept C24326235 @default.
- W4328007026 hasConcept C2778491387 @default.
- W4328007026 hasConcept C2780472235 @default.
- W4328007026 hasConcept C2781281974 @default.
- W4328007026 hasConcept C41008148 @default.
- W4328007026 hasConcept C50644808 @default.
- W4328007026 hasConcept C530470458 @default.
- W4328007026 hasConcept C58471807 @default.
- W4328007026 hasConcept C71924100 @default.
- W4328007026 hasConcept C99498987 @default.
- W4328007026 hasConceptScore W4328007026C115961682 @default.
- W4328007026 hasConceptScore W4328007026C119857082 @default.
- W4328007026 hasConceptScore W4328007026C121608353 @default.
- W4328007026 hasConceptScore W4328007026C126322002 @default.
- W4328007026 hasConceptScore W4328007026C127413603 @default.
- W4328007026 hasConceptScore W4328007026C153180895 @default.
- W4328007026 hasConceptScore W4328007026C154945302 @default.
- W4328007026 hasConceptScore W4328007026C21200559 @default.
- W4328007026 hasConceptScore W4328007026C24326235 @default.
- W4328007026 hasConceptScore W4328007026C2778491387 @default.
- W4328007026 hasConceptScore W4328007026C2780472235 @default.
- W4328007026 hasConceptScore W4328007026C2781281974 @default.
- W4328007026 hasConceptScore W4328007026C41008148 @default.
- W4328007026 hasConceptScore W4328007026C50644808 @default.
- W4328007026 hasConceptScore W4328007026C530470458 @default.
- W4328007026 hasConceptScore W4328007026C58471807 @default.
- W4328007026 hasConceptScore W4328007026C71924100 @default.
- W4328007026 hasConceptScore W4328007026C99498987 @default.
- W4328007026 hasLocation W43280070261 @default.
- W4328007026 hasOpenAccess W4328007026 @default.
- W4328007026 hasPrimaryLocation W43280070261 @default.
- W4328007026 hasRelatedWork W1808333143 @default.
- W4328007026 hasRelatedWork W2065501959 @default.
- W4328007026 hasRelatedWork W2093779201 @default.
- W4328007026 hasRelatedWork W2398471040 @default.
- W4328007026 hasRelatedWork W2715581621 @default.
- W4328007026 hasRelatedWork W2987335104 @default.
- W4328007026 hasRelatedWork W3006377475 @default.
- W4328007026 hasRelatedWork W3120100606 @default.
- W4328007026 hasRelatedWork W4282841042 @default.
- W4328007026 hasRelatedWork W4323074611 @default.
- W4328007026 isParatext "false" @default.
- W4328007026 isRetracted "false" @default.
- W4328007026 workType "article" @default.