Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328007038> ?p ?o ?g. }
- W4328007038 abstract "With the continuous development of information technology and medical data information, more and more clinicians recognize artificial intelligence or will completely change medical practice by using advanced machine learning methods. The potential of using machine learning and predictive analysis to customize specific treatments for individuals is currently under research. Machine learning can learn a large number of medical data and explore the dependencies in data concentration, forming a corresponding medical model that can quickly and accurately predict new data, which is conducive to the early diagnosis of diseases and assisted clinical decisions. Clinical medicine faces the status quo of the relative shortage of medical resources and the identification and rapid diagnosis and treatment of critically ill emergency patients. In the era of big data, clinical demand is driven by clinical needs, and intelligent medical care provided by machines is the key to tackling the aforementioned issues." @default.
- W4328007038 created "2023-03-22" @default.
- W4328007038 creator A5016038041 @default.
- W4328007038 creator A5019459617 @default.
- W4328007038 creator A5035282947 @default.
- W4328007038 creator A5061187994 @default.
- W4328007038 creator A5080602119 @default.
- W4328007038 creator A5081368032 @default.
- W4328007038 date "2023-01-24" @default.
- W4328007038 modified "2023-09-27" @default.
- W4328007038 title "Applications of Machine Learning in Medicine: Current Trends and Prospects" @default.
- W4328007038 cites W2767106416 @default.
- W4328007038 cites W2903211716 @default.
- W4328007038 cites W2904882655 @default.
- W4328007038 cites W2905935816 @default.
- W4328007038 cites W2942047515 @default.
- W4328007038 cites W2948947189 @default.
- W4328007038 cites W2955100472 @default.
- W4328007038 cites W2996758248 @default.
- W4328007038 cites W2998697825 @default.
- W4328007038 cites W3003731747 @default.
- W4328007038 cites W3007475496 @default.
- W4328007038 cites W3017097847 @default.
- W4328007038 cites W3027342555 @default.
- W4328007038 cites W3035142875 @default.
- W4328007038 cites W3038147963 @default.
- W4328007038 cites W3041453914 @default.
- W4328007038 cites W3090260921 @default.
- W4328007038 cites W3095669050 @default.
- W4328007038 cites W3096292264 @default.
- W4328007038 cites W3105613063 @default.
- W4328007038 cites W3119311349 @default.
- W4328007038 cites W3121030829 @default.
- W4328007038 cites W3121586817 @default.
- W4328007038 cites W3173182123 @default.
- W4328007038 cites W3181025656 @default.
- W4328007038 cites W3192610404 @default.
- W4328007038 cites W3211753181 @default.
- W4328007038 cites W4281572218 @default.
- W4328007038 doi "https://doi.org/10.1109/gcwot57803.2023.10064665" @default.
- W4328007038 hasPublicationYear "2023" @default.
- W4328007038 type Work @default.
- W4328007038 citedByCount "0" @default.
- W4328007038 crossrefType "proceedings-article" @default.
- W4328007038 hasAuthorship W4328007038A5016038041 @default.
- W4328007038 hasAuthorship W4328007038A5019459617 @default.
- W4328007038 hasAuthorship W4328007038A5035282947 @default.
- W4328007038 hasAuthorship W4328007038A5061187994 @default.
- W4328007038 hasAuthorship W4328007038A5080602119 @default.
- W4328007038 hasAuthorship W4328007038A5081368032 @default.
- W4328007038 hasConcept C107327155 @default.
- W4328007038 hasConcept C116834253 @default.
- W4328007038 hasConcept C119857082 @default.
- W4328007038 hasConcept C124101348 @default.
- W4328007038 hasConcept C138885662 @default.
- W4328007038 hasConcept C154945302 @default.
- W4328007038 hasConcept C162324750 @default.
- W4328007038 hasConcept C194051981 @default.
- W4328007038 hasConcept C2522767166 @default.
- W4328007038 hasConcept C26517878 @default.
- W4328007038 hasConcept C2776748549 @default.
- W4328007038 hasConcept C2778137410 @default.
- W4328007038 hasConcept C2985722590 @default.
- W4328007038 hasConcept C3019150057 @default.
- W4328007038 hasConcept C34447519 @default.
- W4328007038 hasConcept C38652104 @default.
- W4328007038 hasConcept C41008148 @default.
- W4328007038 hasConcept C41895202 @default.
- W4328007038 hasConcept C509550671 @default.
- W4328007038 hasConcept C56739046 @default.
- W4328007038 hasConcept C59822182 @default.
- W4328007038 hasConcept C63527458 @default.
- W4328007038 hasConcept C71924100 @default.
- W4328007038 hasConcept C75684735 @default.
- W4328007038 hasConcept C86803240 @default.
- W4328007038 hasConceptScore W4328007038C107327155 @default.
- W4328007038 hasConceptScore W4328007038C116834253 @default.
- W4328007038 hasConceptScore W4328007038C119857082 @default.
- W4328007038 hasConceptScore W4328007038C124101348 @default.
- W4328007038 hasConceptScore W4328007038C138885662 @default.
- W4328007038 hasConceptScore W4328007038C154945302 @default.
- W4328007038 hasConceptScore W4328007038C162324750 @default.
- W4328007038 hasConceptScore W4328007038C194051981 @default.
- W4328007038 hasConceptScore W4328007038C2522767166 @default.
- W4328007038 hasConceptScore W4328007038C26517878 @default.
- W4328007038 hasConceptScore W4328007038C2776748549 @default.
- W4328007038 hasConceptScore W4328007038C2778137410 @default.
- W4328007038 hasConceptScore W4328007038C2985722590 @default.
- W4328007038 hasConceptScore W4328007038C3019150057 @default.
- W4328007038 hasConceptScore W4328007038C34447519 @default.
- W4328007038 hasConceptScore W4328007038C38652104 @default.
- W4328007038 hasConceptScore W4328007038C41008148 @default.
- W4328007038 hasConceptScore W4328007038C41895202 @default.
- W4328007038 hasConceptScore W4328007038C509550671 @default.
- W4328007038 hasConceptScore W4328007038C56739046 @default.
- W4328007038 hasConceptScore W4328007038C59822182 @default.
- W4328007038 hasConceptScore W4328007038C63527458 @default.
- W4328007038 hasConceptScore W4328007038C71924100 @default.
- W4328007038 hasConceptScore W4328007038C75684735 @default.
- W4328007038 hasConceptScore W4328007038C86803240 @default.