Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328007071> ?p ?o ?g. }
- W4328007071 endingPage "13" @default.
- W4328007071 startingPage "1" @default.
- W4328007071 abstract "Graph convolutional network (GCN) as a combination of deep learning and graph learning has gained increasing attention in hyperspectral image (HSI) classification. However, most GCN methods consider the simple point-to-point structure between two pixels rather than the high-order structure of multiple pixels, which is contradict with the real feature distribution of ground object. And the nonlinear property of HSI also brings challenge for precise structural representation in GCN. To tackle these problems, this work proposes a structure preserved hypergraph convolution network (SPHGCN). It first builds a multiple neighborhood reconstruction (MNR) model to reveal the essential resemblance of multiple pixels in nonlinear spectral feature space. With the high-order structure, SPHGCN designs the hypergraph convolution operation for irregular feature aggregation among similar pixels from different regions, which achieves more discriminative features from multiple pixel nodes. Meanwhile, a structure preservation layer is built to optimize the distribution of convolutional features under the guidance of high-order structure. Moreover, SPHGCN integrates local regular convolution and irregular hypergraph convolution to learn the structured semantic feature of HSI. This strategy breaks the boundary restriction in traditional convolution and aggregates semantic feature across different image patches. Experiments on three HSI data sets indicate that SPHGCN outperforms a few state-of-the-art methods for HSI classification." @default.
- W4328007071 created "2023-03-22" @default.
- W4328007071 creator A5008251375 @default.
- W4328007071 creator A5033398332 @default.
- W4328007071 creator A5064046752 @default.
- W4328007071 creator A5065992929 @default.
- W4328007071 creator A5073659154 @default.
- W4328007071 date "2023-01-01" @default.
- W4328007071 modified "2023-10-16" @default.
- W4328007071 title "Classification via Structure-Preserved Hypergraph Convolution Network for Hyperspectral Image" @default.
- W4328007071 cites W2029316659 @default.
- W4328007071 cites W2085944979 @default.
- W4328007071 cites W2475283175 @default.
- W4328007071 cites W2587820918 @default.
- W4328007071 cites W2738160899 @default.
- W4328007071 cites W2742141965 @default.
- W4328007071 cites W2780035707 @default.
- W4328007071 cites W2789643644 @default.
- W4328007071 cites W2884653088 @default.
- W4328007071 cites W2892621946 @default.
- W4328007071 cites W2899003677 @default.
- W4328007071 cites W2909041182 @default.
- W4328007071 cites W2920405132 @default.
- W4328007071 cites W2944653015 @default.
- W4328007071 cites W2948962630 @default.
- W4328007071 cites W2957651636 @default.
- W4328007071 cites W2968460295 @default.
- W4328007071 cites W2972505576 @default.
- W4328007071 cites W2973319229 @default.
- W4328007071 cites W2992040930 @default.
- W4328007071 cites W2999482976 @default.
- W4328007071 cites W3008789903 @default.
- W4328007071 cites W3024007459 @default.
- W4328007071 cites W3047443805 @default.
- W4328007071 cites W3082700671 @default.
- W4328007071 cites W3085067733 @default.
- W4328007071 cites W3097417773 @default.
- W4328007071 cites W3133744039 @default.
- W4328007071 cites W3138637597 @default.
- W4328007071 cites W3152656798 @default.
- W4328007071 cites W3178695133 @default.
- W4328007071 cites W3191251640 @default.
- W4328007071 cites W3200959564 @default.
- W4328007071 cites W3207486396 @default.
- W4328007071 cites W3217526930 @default.
- W4328007071 cites W4225630686 @default.
- W4328007071 cites W4226438862 @default.
- W4328007071 cites W4282934494 @default.
- W4328007071 cites W4310064006 @default.
- W4328007071 cites W4313476697 @default.
- W4328007071 cites W4319865968 @default.
- W4328007071 doi "https://doi.org/10.1109/tgrs.2023.3258977" @default.
- W4328007071 hasPublicationYear "2023" @default.
- W4328007071 type Work @default.
- W4328007071 citedByCount "15" @default.
- W4328007071 countsByYear W43280070712023 @default.
- W4328007071 crossrefType "journal-article" @default.
- W4328007071 hasAuthorship W4328007071A5008251375 @default.
- W4328007071 hasAuthorship W4328007071A5033398332 @default.
- W4328007071 hasAuthorship W4328007071A5064046752 @default.
- W4328007071 hasAuthorship W4328007071A5065992929 @default.
- W4328007071 hasAuthorship W4328007071A5073659154 @default.
- W4328007071 hasConcept C11413529 @default.
- W4328007071 hasConcept C118615104 @default.
- W4328007071 hasConcept C132525143 @default.
- W4328007071 hasConcept C138885662 @default.
- W4328007071 hasConcept C153180895 @default.
- W4328007071 hasConcept C154945302 @default.
- W4328007071 hasConcept C159078339 @default.
- W4328007071 hasConcept C160633673 @default.
- W4328007071 hasConcept C2776401178 @default.
- W4328007071 hasConcept C2781221856 @default.
- W4328007071 hasConcept C33923547 @default.
- W4328007071 hasConcept C41008148 @default.
- W4328007071 hasConcept C41895202 @default.
- W4328007071 hasConcept C45347329 @default.
- W4328007071 hasConcept C50644808 @default.
- W4328007071 hasConcept C80444323 @default.
- W4328007071 hasConcept C81363708 @default.
- W4328007071 hasConcept C83665646 @default.
- W4328007071 hasConcept C97931131 @default.
- W4328007071 hasConceptScore W4328007071C11413529 @default.
- W4328007071 hasConceptScore W4328007071C118615104 @default.
- W4328007071 hasConceptScore W4328007071C132525143 @default.
- W4328007071 hasConceptScore W4328007071C138885662 @default.
- W4328007071 hasConceptScore W4328007071C153180895 @default.
- W4328007071 hasConceptScore W4328007071C154945302 @default.
- W4328007071 hasConceptScore W4328007071C159078339 @default.
- W4328007071 hasConceptScore W4328007071C160633673 @default.
- W4328007071 hasConceptScore W4328007071C2776401178 @default.
- W4328007071 hasConceptScore W4328007071C2781221856 @default.
- W4328007071 hasConceptScore W4328007071C33923547 @default.
- W4328007071 hasConceptScore W4328007071C41008148 @default.
- W4328007071 hasConceptScore W4328007071C41895202 @default.
- W4328007071 hasConceptScore W4328007071C45347329 @default.
- W4328007071 hasConceptScore W4328007071C50644808 @default.
- W4328007071 hasConceptScore W4328007071C80444323 @default.
- W4328007071 hasConceptScore W4328007071C81363708 @default.