Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328007132> ?p ?o ?g. }
- W4328007132 endingPage "4739" @default.
- W4328007132 startingPage "4723" @default.
- W4328007132 abstract "In this paper, we further investigate the constructions of complementary sequence sets (CSSs) and complete complementary codes (CCCs) by Butson-type Hadamard matrices. By taking the algebraic structure of Butson-type Hadamard (BH) matrices into consideration, we obtain the explicit representation of the <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$delta $ </tex-math></inline-formula> -linear terms and <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$delta $ </tex-math></inline-formula> -quadratic terms, which are ingredients to construct CSSs and CCCs. In particular, we derive the <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$delta $ </tex-math></inline-formula> -quadratic terms determined by DFT matrices and BH matrices constructed from 2-level autocorrelation sequences, which yields two type of new contructions. We show that inequivalent BH matrices produce different CSSs and CCCs, which proves that our constructed CSSs and CCCs are new. As a consequence of the first type of the constructions, not only a large number of <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$p$ </tex-math></inline-formula> -ary CSSs and CCCs of size <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$p$ </tex-math></inline-formula> ( <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$p$ </tex-math></inline-formula> prime) have been proposed, which were never reported in the literature, but also a theory linking these CSSs of <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$p$ </tex-math></inline-formula> -ary sequences and the generalized Reed-Muller codes proposed by Kasami et al. is shown. These codes enjoy good error-correcting capability, tightly controlled PMEPR, and significantly extend the range of coding options for applications of OFDM using <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$p^{n}$ </tex-math></inline-formula> subcarriers. As a consequence of the second type of the constructions, we reveal an extremely fascinating hidden connection between the sequences in aperiodic CSSs and CCCs and the sequences with ideal period 2-level autocorrelation, through their trace representations and permutation polynomials over finite fields." @default.
- W4328007132 created "2023-03-22" @default.
- W4328007132 creator A5036636567 @default.
- W4328007132 creator A5091737168 @default.
- W4328007132 date "2023-07-01" @default.
- W4328007132 modified "2023-10-09" @default.
- W4328007132 title "Constructions of Complementary Sequence Sets and Complete Complementary Codes by Ideal Two-Level Autocorrelation Sequences and Permutation Polynomials" @default.
- W4328007132 cites W137692827 @default.
- W4328007132 cites W1497212759 @default.
- W4328007132 cites W1559467559 @default.
- W4328007132 cites W1569301884 @default.
- W4328007132 cites W1601092409 @default.
- W4328007132 cites W1965510685 @default.
- W4328007132 cites W1971990650 @default.
- W4328007132 cites W1977299570 @default.
- W4328007132 cites W1985833770 @default.
- W4328007132 cites W1990773884 @default.
- W4328007132 cites W1990961602 @default.
- W4328007132 cites W1995336810 @default.
- W4328007132 cites W2012585113 @default.
- W4328007132 cites W2019429285 @default.
- W4328007132 cites W2024674802 @default.
- W4328007132 cites W2030243808 @default.
- W4328007132 cites W2035119330 @default.
- W4328007132 cites W2038838181 @default.
- W4328007132 cites W2046476204 @default.
- W4328007132 cites W2052943664 @default.
- W4328007132 cites W2057419313 @default.
- W4328007132 cites W2063994293 @default.
- W4328007132 cites W2073236804 @default.
- W4328007132 cites W2081226011 @default.
- W4328007132 cites W2097688198 @default.
- W4328007132 cites W2098624007 @default.
- W4328007132 cites W2098868241 @default.
- W4328007132 cites W2102994641 @default.
- W4328007132 cites W2107415712 @default.
- W4328007132 cites W2112474155 @default.
- W4328007132 cites W2113980068 @default.
- W4328007132 cites W2116391085 @default.
- W4328007132 cites W2129751894 @default.
- W4328007132 cites W2133087726 @default.
- W4328007132 cites W2135689668 @default.
- W4328007132 cites W2136435457 @default.
- W4328007132 cites W2140452533 @default.
- W4328007132 cites W2141445884 @default.
- W4328007132 cites W2147741675 @default.
- W4328007132 cites W2149730002 @default.
- W4328007132 cites W2154416717 @default.
- W4328007132 cites W2160136043 @default.
- W4328007132 cites W2161616900 @default.
- W4328007132 cites W2167155388 @default.
- W4328007132 cites W2294688254 @default.
- W4328007132 cites W2477775364 @default.
- W4328007132 cites W2546826387 @default.
- W4328007132 cites W2774598712 @default.
- W4328007132 cites W2803411812 @default.
- W4328007132 cites W3100382444 @default.
- W4328007132 cites W3163505986 @default.
- W4328007132 cites W4243205024 @default.
- W4328007132 doi "https://doi.org/10.1109/tit.2023.3258180" @default.
- W4328007132 hasPublicationYear "2023" @default.
- W4328007132 type Work @default.
- W4328007132 citedByCount "1" @default.
- W4328007132 countsByYear W43280071322023 @default.
- W4328007132 crossrefType "journal-article" @default.
- W4328007132 hasAuthorship W4328007132A5036636567 @default.
- W4328007132 hasAuthorship W4328007132A5091737168 @default.
- W4328007132 hasConcept C114614502 @default.
- W4328007132 hasConcept C118615104 @default.
- W4328007132 hasConcept C134306372 @default.
- W4328007132 hasConcept C136119220 @default.
- W4328007132 hasConcept C18903297 @default.
- W4328007132 hasConcept C202444582 @default.
- W4328007132 hasConcept C2777299769 @default.
- W4328007132 hasConcept C2778112365 @default.
- W4328007132 hasConcept C33923547 @default.
- W4328007132 hasConcept C45357846 @default.
- W4328007132 hasConcept C54355233 @default.
- W4328007132 hasConcept C60292330 @default.
- W4328007132 hasConcept C86803240 @default.
- W4328007132 hasConcept C9376300 @default.
- W4328007132 hasConcept C94375191 @default.
- W4328007132 hasConceptScore W4328007132C114614502 @default.
- W4328007132 hasConceptScore W4328007132C118615104 @default.
- W4328007132 hasConceptScore W4328007132C134306372 @default.
- W4328007132 hasConceptScore W4328007132C136119220 @default.
- W4328007132 hasConceptScore W4328007132C18903297 @default.
- W4328007132 hasConceptScore W4328007132C202444582 @default.
- W4328007132 hasConceptScore W4328007132C2777299769 @default.
- W4328007132 hasConceptScore W4328007132C2778112365 @default.
- W4328007132 hasConceptScore W4328007132C33923547 @default.
- W4328007132 hasConceptScore W4328007132C45357846 @default.
- W4328007132 hasConceptScore W4328007132C54355233 @default.
- W4328007132 hasConceptScore W4328007132C60292330 @default.
- W4328007132 hasConceptScore W4328007132C86803240 @default.
- W4328007132 hasConceptScore W4328007132C9376300 @default.
- W4328007132 hasConceptScore W4328007132C94375191 @default.
- W4328007132 hasFunder F4320321001 @default.