Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328007154> ?p ?o ?g. }
- W4328007154 endingPage "3173" @default.
- W4328007154 startingPage "3158" @default.
- W4328007154 abstract "The documentation of historical remains and cultural heritage is of great importance to preserve historical knowledge. Many studies use low-resolution airplane-based laser scanning and manual interpretation for this purpose. In this study, a concept to automatically detect terrain anomalies in a historical conflict landscape using high-resolution UAV-LiDAR data was developed. We applied different ground filter algorithms and included a spline-based approximation step in order to improve the removal of low vegetation. Due to the absence of comprehensive labeled training data, a one-class support vector machine algorithm was used in an unsupervised manner in order to automatically detect the terrain anomalies. We applied our approach in a study site with different densities of low vegetation. The morphological ground filter was the most suitable when dense near-ground vegetation is present. However, with the use of the spline-based processing step, all filters used could be significantly improved in terms of the F1-score of the classification results. It increased by up to 42 percentage points in the area with dense low vegetation and by up to 14 percentage points in the area with sparse low vegetation. The completeness (recall) reached maximum values of 0.8 and 1.0, respectively, when taking into account the results leading to the highest F1-score for each filter. Therefore, our concept can support on-site field prospection." @default.
- W4328007154 created "2023-03-22" @default.
- W4328007154 creator A5018040226 @default.
- W4328007154 creator A5046073189 @default.
- W4328007154 creator A5063335506 @default.
- W4328007154 creator A5071580268 @default.
- W4328007154 date "2023-01-01" @default.
- W4328007154 modified "2023-09-26" @default.
- W4328007154 title "Detecting Historical Terrain Anomalies With UAV-LiDAR Data Using Spline-Approximation and Support Vector Machines" @default.
- W4328007154 cites W1584308190 @default.
- W4328007154 cites W1604274158 @default.
- W4328007154 cites W1896878721 @default.
- W4328007154 cites W1967892600 @default.
- W4328007154 cites W2008524030 @default.
- W4328007154 cites W2010144851 @default.
- W4328007154 cites W2010980358 @default.
- W4328007154 cites W2019595634 @default.
- W4328007154 cites W2034546021 @default.
- W4328007154 cites W2036350498 @default.
- W4328007154 cites W2043655847 @default.
- W4328007154 cites W2053559325 @default.
- W4328007154 cites W2056196908 @default.
- W4328007154 cites W2059390955 @default.
- W4328007154 cites W2063907334 @default.
- W4328007154 cites W2091168295 @default.
- W4328007154 cites W2092681559 @default.
- W4328007154 cites W2098318822 @default.
- W4328007154 cites W2111990660 @default.
- W4328007154 cites W2115451191 @default.
- W4328007154 cites W2125517209 @default.
- W4328007154 cites W2130319358 @default.
- W4328007154 cites W2132870739 @default.
- W4328007154 cites W2138126656 @default.
- W4328007154 cites W2151487447 @default.
- W4328007154 cites W2152482502 @default.
- W4328007154 cites W2161920802 @default.
- W4328007154 cites W2236626706 @default.
- W4328007154 cites W2254913860 @default.
- W4328007154 cites W2290277228 @default.
- W4328007154 cites W2318037162 @default.
- W4328007154 cites W2436494909 @default.
- W4328007154 cites W2521658442 @default.
- W4328007154 cites W2562767789 @default.
- W4328007154 cites W2564563592 @default.
- W4328007154 cites W2572696731 @default.
- W4328007154 cites W2600210918 @default.
- W4328007154 cites W2604671466 @default.
- W4328007154 cites W2765920222 @default.
- W4328007154 cites W2771855983 @default.
- W4328007154 cites W2777445343 @default.
- W4328007154 cites W2782428144 @default.
- W4328007154 cites W2793222099 @default.
- W4328007154 cites W2801699037 @default.
- W4328007154 cites W2807200675 @default.
- W4328007154 cites W2809786260 @default.
- W4328007154 cites W2889130004 @default.
- W4328007154 cites W2916207499 @default.
- W4328007154 cites W2925480424 @default.
- W4328007154 cites W2940726923 @default.
- W4328007154 cites W2952586513 @default.
- W4328007154 cites W2962045372 @default.
- W4328007154 cites W2966705629 @default.
- W4328007154 cites W2968911939 @default.
- W4328007154 cites W2998955428 @default.
- W4328007154 cites W3000616464 @default.
- W4328007154 cites W3015952109 @default.
- W4328007154 cites W3017240201 @default.
- W4328007154 cites W3021800675 @default.
- W4328007154 cites W3034383424 @default.
- W4328007154 cites W3042040129 @default.
- W4328007154 cites W3043173532 @default.
- W4328007154 cites W3093852944 @default.
- W4328007154 cites W3119213458 @default.
- W4328007154 cites W3132306844 @default.
- W4328007154 cites W3157119605 @default.
- W4328007154 cites W3214690035 @default.
- W4328007154 cites W3217350158 @default.
- W4328007154 cites W4200473331 @default.
- W4328007154 cites W4206092300 @default.
- W4328007154 cites W4213027859 @default.
- W4328007154 cites W4225690796 @default.
- W4328007154 cites W4226052511 @default.
- W4328007154 cites W4303980758 @default.
- W4328007154 cites W4310396775 @default.
- W4328007154 doi "https://doi.org/10.1109/jstars.2023.3259200" @default.
- W4328007154 hasPublicationYear "2023" @default.
- W4328007154 type Work @default.
- W4328007154 citedByCount "0" @default.
- W4328007154 crossrefType "journal-article" @default.
- W4328007154 hasAuthorship W4328007154A5018040226 @default.
- W4328007154 hasAuthorship W4328007154A5046073189 @default.
- W4328007154 hasAuthorship W4328007154A5063335506 @default.
- W4328007154 hasAuthorship W4328007154A5071580268 @default.
- W4328007154 hasBestOaLocation W43280071541 @default.
- W4328007154 hasConcept C10390562 @default.
- W4328007154 hasConcept C106131492 @default.
- W4328007154 hasConcept C11413529 @default.
- W4328007154 hasConcept C12267149 @default.