Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328007185> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W4328007185 endingPage "3435" @default.
- W4328007185 startingPage "3425" @default.
- W4328007185 abstract "Conventional power grids dominated by synchronous generators gradually shift to variable renewable-energy-integrated grids. With the growth of building-level photovoltaic (PV) panels and other inverter-based resource (IBR) deployments in recent years, market retailers and distribution operators have had to deal with the additional operational and management challenges posed by unobserved energy flow if its behind-the-meter (BTM) configuration. Also, the intermittent and stochastic nature of IBR-based solar power introduces uncertainty into the net load forecasting of electric distribution systems. Hence, management and control with high uncertainty in load prediction due to unobservable PV is a technical challenge. This article presents deep-learning-based algorithms for BTM PV power generation using a limited number of sensors in a given distribution system and extending to adjacent geographical areas. The proposed BTM PV forecasting method is based on geometric deep learning—a spatiotemporal graph neural network by processing the relationship between data in a non-Euclidean graph structure. The predictions of short-term BTM PV are aggregated with loss estimation at the data aggregation point with the net load forecasting to compute the true load forecasting with superior performance. The developed BTM PV forecasting method significantly improved true load forecasting results, which were validated and analyzed using a collection of actual BTM PV and load measurements in a test distribution feeder." @default.
- W4328007185 created "2023-03-22" @default.
- W4328007185 creator A5012242278 @default.
- W4328007185 creator A5028171150 @default.
- W4328007185 creator A5029718049 @default.
- W4328007185 creator A5032464575 @default.
- W4328007185 creator A5058690742 @default.
- W4328007185 date "2023-09-01" @default.
- W4328007185 modified "2023-10-14" @default.
- W4328007185 title "Geometric Deep-Learning-Based Spatiotemporal Forecasting for Inverter-Based Solar Power" @default.
- W4328007185 cites W130406184 @default.
- W4328007185 cites W1587194470 @default.
- W4328007185 cites W1970463904 @default.
- W4328007185 cites W1989726836 @default.
- W4328007185 cites W2034404038 @default.
- W4328007185 cites W2061317708 @default.
- W4328007185 cites W2080822545 @default.
- W4328007185 cites W2101491865 @default.
- W4328007185 cites W2109842007 @default.
- W4328007185 cites W2115294291 @default.
- W4328007185 cites W2168519756 @default.
- W4328007185 cites W2185622477 @default.
- W4328007185 cites W2412523952 @default.
- W4328007185 cites W2607339923 @default.
- W4328007185 cites W2621841909 @default.
- W4328007185 cites W2752901932 @default.
- W4328007185 cites W2758301547 @default.
- W4328007185 cites W2762797296 @default.
- W4328007185 cites W2764018574 @default.
- W4328007185 cites W2782267877 @default.
- W4328007185 cites W2786806645 @default.
- W4328007185 cites W2790866531 @default.
- W4328007185 cites W2909194704 @default.
- W4328007185 cites W2943809873 @default.
- W4328007185 cites W2979735839 @default.
- W4328007185 cites W3015024348 @default.
- W4328007185 cites W3024537702 @default.
- W4328007185 cites W3043337086 @default.
- W4328007185 cites W3112294296 @default.
- W4328007185 cites W3126081667 @default.
- W4328007185 cites W3164346365 @default.
- W4328007185 doi "https://doi.org/10.1109/jsyst.2023.3250403" @default.
- W4328007185 hasPublicationYear "2023" @default.
- W4328007185 type Work @default.
- W4328007185 citedByCount "0" @default.
- W4328007185 crossrefType "journal-article" @default.
- W4328007185 hasAuthorship W4328007185A5012242278 @default.
- W4328007185 hasAuthorship W4328007185A5028171150 @default.
- W4328007185 hasAuthorship W4328007185A5029718049 @default.
- W4328007185 hasAuthorship W4328007185A5032464575 @default.
- W4328007185 hasAuthorship W4328007185A5058690742 @default.
- W4328007185 hasConcept C119599485 @default.
- W4328007185 hasConcept C121332964 @default.
- W4328007185 hasConcept C127413603 @default.
- W4328007185 hasConcept C154945302 @default.
- W4328007185 hasConcept C163258240 @default.
- W4328007185 hasConcept C188573790 @default.
- W4328007185 hasConcept C200601418 @default.
- W4328007185 hasConcept C41008148 @default.
- W4328007185 hasConcept C41291067 @default.
- W4328007185 hasConcept C50644808 @default.
- W4328007185 hasConcept C62520636 @default.
- W4328007185 hasConcept C79403827 @default.
- W4328007185 hasConcept C89227174 @default.
- W4328007185 hasConceptScore W4328007185C119599485 @default.
- W4328007185 hasConceptScore W4328007185C121332964 @default.
- W4328007185 hasConceptScore W4328007185C127413603 @default.
- W4328007185 hasConceptScore W4328007185C154945302 @default.
- W4328007185 hasConceptScore W4328007185C163258240 @default.
- W4328007185 hasConceptScore W4328007185C188573790 @default.
- W4328007185 hasConceptScore W4328007185C200601418 @default.
- W4328007185 hasConceptScore W4328007185C41008148 @default.
- W4328007185 hasConceptScore W4328007185C41291067 @default.
- W4328007185 hasConceptScore W4328007185C50644808 @default.
- W4328007185 hasConceptScore W4328007185C62520636 @default.
- W4328007185 hasConceptScore W4328007185C79403827 @default.
- W4328007185 hasConceptScore W4328007185C89227174 @default.
- W4328007185 hasFunder F4320306084 @default.
- W4328007185 hasIssue "3" @default.
- W4328007185 hasLocation W43280071851 @default.
- W4328007185 hasOpenAccess W4328007185 @default.
- W4328007185 hasPrimaryLocation W43280071851 @default.
- W4328007185 hasRelatedWork W1974792186 @default.
- W4328007185 hasRelatedWork W2081146471 @default.
- W4328007185 hasRelatedWork W2143930673 @default.
- W4328007185 hasRelatedWork W2246918108 @default.
- W4328007185 hasRelatedWork W2386387936 @default.
- W4328007185 hasRelatedWork W2582212168 @default.
- W4328007185 hasRelatedWork W2899084033 @default.
- W4328007185 hasRelatedWork W4250714193 @default.
- W4328007185 hasRelatedWork W4309744252 @default.
- W4328007185 hasRelatedWork W919102594 @default.
- W4328007185 hasVolume "17" @default.
- W4328007185 isParatext "false" @default.
- W4328007185 isRetracted "false" @default.
- W4328007185 workType "article" @default.